'''
PM4Py – A Process Mining Library for Python
Copyright (C) 2024 Process Intelligence Solutions UG (haftungsbeschränkt)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as
published by the Free Software Foundation, either version 3 of the
License, or any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public License
along with this program. If not, see this software project's root or
visit <https://www.gnu.org/licenses/>.
Website: https://processintelligence.solutions
Contact: info@processintelligence.solutions
'''
import itertools
import sys
from abc import ABC
from collections import Counter
from typing import Collection, Any, List, Optional, Generic, Dict
from typing import Tuple
from pm4py.algo.discovery.inductive.cuts.abc import Cut
from pm4py.algo.discovery.inductive.cuts.abc import T
from pm4py.algo.discovery.inductive.dtypes.im_dfg import InductiveDFG
from pm4py.algo.discovery.inductive.dtypes.im_ds import (
IMDataStructureUVCL,
IMDataStructureDFG,
)
from pm4py.objects.dfg import util as dfu
from pm4py.objects.dfg.obj import DFG
from pm4py.objects.process_tree.obj import Operator, ProcessTree
[docs]
class SequenceCut(Cut[T], ABC, Generic[T]):
[docs]
@classmethod
def operator(
cls, parameters: Optional[Dict[str, Any]] = None
) -> ProcessTree:
return ProcessTree(operator=Operator.SEQUENCE)
[docs]
@staticmethod
def check_merge_condition(g1, g2, trans_succ):
for a1 in g1:
for a2 in g2:
if (a2 in trans_succ[a1] and a1 in trans_succ[a2]) or (
a2 not in trans_succ[a1] and a1 not in trans_succ[a2]
):
return True
return False
[docs]
@staticmethod
def merge_groups(groups, trans_succ):
i = 0
while i < len(groups):
j = i + 1
while j < len(groups):
if SequenceCut.check_merge_condition(
groups[i], groups[j], trans_succ
):
groups[i] = groups[i].union(groups[j])
del groups[j]
continue
j = j + 1
i = i + 1
return groups
[docs]
@classmethod
def holds(
cls, obj: T, parameters: Optional[Dict[str, Any]] = None
) -> Optional[List[Collection[Any]]]:
"""
This method finds a sequence cut in the dfg.
Implementation follows function sequence on page 188 of
"Robust Process Mining with Guarantees" by Sander J.J. Leemans (ISBN: 978-90-386-4257-4)
Basic Steps:
1. create a group per activity
2. merge pairwise reachable nodes (based on transitive relations)
3. merge pairwise unreachable nodes (based on transitive relations)
4. sort the groups based on their reachability
"""
dfg = obj.dfg
alphabet = dfu.get_vertices(dfg)
transitive_predecessors, transitive_successors = (
dfu.get_transitive_relations(dfg)
)
groups = [{a} for a in alphabet]
if len(groups) == 0:
return None
old_size = None
while old_size != len(groups):
old_size = len(groups)
groups = SequenceCut.merge_groups(groups, transitive_successors)
groups = list(
sorted(
groups,
key=lambda g: len(transitive_predecessors[next(iter(g))])
+ (len(alphabet) - len(transitive_successors[next(iter(g))])),
)
)
return groups if len(groups) > 1 else None
[docs]
class StrictSequenceCut(SequenceCut[T], ABC, Generic[T]):
@classmethod
def _skippable(
cls,
p: int,
dfg: DFG,
start: Collection[Any],
end: Collection[Any],
groups: List[Collection[Any]],
parameters: Optional[Dict[str, Any]] = None,
) -> bool:
"""
This method implements the function SKIPPABLE as defined on page 233 of
"Robust Process Mining with Guarantees" by Sander J.J. Leemans (ISBN: 978-90-386-4257-4)
The function is used as a helper function for the strict sequence cut detection mechanism, which detects
larger groups of skippable activities.
"""
for i, j in itertools.product(range(0, p), range(p + 1, len(groups))):
for a, b in itertools.product(groups[i], groups[j]):
if (a, b) in dfg.graph:
return True
for i in range(p + 1, len(groups)):
for a in groups[i]:
if a in start:
return True
for i in range(0, p):
for a in groups[i]:
if a in end:
return True
return False
[docs]
@classmethod
def holds(
cls, obj: T, parameters: Optional[Dict[str, Any]] = None
) -> Optional[List[Collection[Any]]]:
"""
This method implements the strict sequence cut as defined on page 233 of
"Robust Process Mining with Guarantees" by Sander J.J. Leemans (ISBN: 978-90-386-4257-4)
The function merges groups that together can be skipped.
"""
dfg = obj.dfg
c = SequenceCut.holds(obj)
start = set(dfg.start_activities.keys())
end = set(dfg.end_activities.keys())
if c is not None:
mf = [
(
-1 * sys.maxsize
if len(set(G).intersection(start)) > 0
else sys.maxsize
)
for G in c
]
mt = [
(
sys.maxsize
if len(set(G).intersection(end)) > 0
else -1 * sys.maxsize
)
for G in c
]
cmap = cls._construct_alphabet_cluster_map(c)
for a, b in dfg.graph:
mf[cmap[b]] = min(mf[cmap[b]], cmap[a])
mt[cmap[a]] = max(mt[cmap[a]], cmap[b])
for p in range(0, len(c)):
if cls._skippable(p, dfg, start, end, c):
q = p - 1
while q >= 0 and mt[q] <= p:
c[p] = c[p].union(c[q])
c[q] = set()
q -= 1
q = p + 1
while q < len(mf) and mf[q] >= p:
c[p] = c[p].union(c[q])
c[q] = set()
q += 1
return list(filter(lambda g: len(g) > 0, c))
return None
@classmethod
def _construct_alphabet_cluster_map(
cls,
c: List[Collection[Any]],
parameters: Optional[Dict[str, Any]] = None,
):
map = dict()
for i in range(0, len(c)):
for a in c[i]:
map[a] = i
return map
[docs]
class SequenceCutUVCL(SequenceCut[IMDataStructureUVCL]):
[docs]
@classmethod
def project(
cls,
obj: IMDataStructureUVCL,
groups: List[Collection[Any]],
parameters: Optional[Dict[str, Any]] = None,
) -> List[IMDataStructureUVCL]:
logs = [Counter() for g in groups]
for t in obj.data_structure:
i = 0
split_point = 0
act_union = set()
while i < len(groups):
new_split_point = cls._find_split_point(
t, groups[i], split_point, act_union
)
trace_i = tuple()
j = split_point
while j < new_split_point:
if t[j] in groups[i]:
trace_i = trace_i + (t[j],)
j = j + 1
logs[i].update({trace_i: obj.data_structure[t]})
split_point = new_split_point
act_union = act_union.union(set(groups[i]))
i = i + 1
return list(map(lambda l: IMDataStructureUVCL(l), logs))
@classmethod
def _find_split_point(
cls,
t: Tuple[Any],
group: Collection[Any],
start: int,
ignore: Collection[Any],
parameters: Optional[Dict[str, Any]] = None,
) -> int:
least_cost = 0
position_with_least_cost = start
cost = 0
i = start
while i < len(t):
if t[i] in group:
cost = cost - 1
elif t[i] not in ignore:
cost = cost + 1
if cost < least_cost:
least_cost = cost
position_with_least_cost = i + 1
i = i + 1
return position_with_least_cost
[docs]
class StrictSequenceCutUVCL(
StrictSequenceCut[IMDataStructureUVCL], SequenceCutUVCL
):
[docs]
@classmethod
def holds(
cls, obj: T, parameters: Optional[Dict[str, Any]] = None
) -> Optional[List[Collection[Any]]]:
return StrictSequenceCut.holds(obj, parameters)
[docs]
class SequenceCutDFG(SequenceCut[IMDataStructureDFG]):
[docs]
@classmethod
def project(
cls,
obj: IMDataStructureDFG,
groups: List[Collection[Any]],
parameters: Optional[Dict[str, Any]] = None,
) -> List[IMDataStructureDFG]:
dfg = obj.dfg
start_activities = []
end_activities = []
activities = []
dfgs = []
skippable = []
for g in groups:
skippable.append(False)
activities_idx = {}
for gind, g in enumerate(groups):
for act in g:
activities_idx[act] = int(gind)
i = 0
while i < len(groups):
to_succ_arcs = Counter()
from_prev_arcs = Counter()
if i < len(groups) - 1:
for a, b in dfg.graph:
if a in groups[i] and b in groups[i + 1]:
to_succ_arcs[a] += dfg.graph[(a, b)]
if i > 0:
for a, b in dfg.graph:
if a in groups[i - 1] and b in groups[i]:
from_prev_arcs[b] += dfg.graph[(a, b)]
if i == 0:
start_activities.append({})
for a in dfg.start_activities:
if a in groups[i]:
start_activities[i][a] = dfg.start_activities[a]
else:
j = i
while j < activities_idx[a]:
skippable[j] = True
j = j + 1
else:
start_activities.append(from_prev_arcs)
if i == len(groups) - 1:
end_activities.append({})
for a in dfg.end_activities:
if a in groups[i]:
end_activities[i][a] = dfg.end_activities[a]
else:
j = activities_idx[a] + 1
while j <= i:
skippable[j] = True
j = j + 1
else:
end_activities.append(to_succ_arcs)
activities.append({})
act_count = dfu.get_vertex_frequencies(dfg)
for a in groups[i]:
activities[i][a] = act_count[a]
dfgs.append({})
for a, b in dfg.graph:
if a in groups[i] and b in groups[i]:
dfgs[i][(a, b)] = dfg.graph[(a, b)]
i = i + 1
i = 0
while i < len(dfgs):
dfi = DFG()
[dfi.graph.update({(a, b): dfgs[i][(a, b)]}) for (a, b) in dfgs[i]]
[
dfi.start_activities.update({a: start_activities[i][a]})
for a in start_activities[i]
]
[
dfi.end_activities.update({a: end_activities[i][a]})
for a in end_activities[i]
]
dfgs[i] = dfi
i = i + 1
for a, b in dfg.graph:
z = activities_idx[b]
j = activities_idx[a] + 1
while j < z:
skippable[j] = True
j = j + 1
return [
IMDataStructureDFG(InductiveDFG(dfg=dfgs[i], skip=skippable[i]))
for i in range(len(dfgs))
]
[docs]
class StrictSequenceCutDFG(
StrictSequenceCut[IMDataStructureDFG], SequenceCutDFG
):
[docs]
@classmethod
def holds(
cls, obj: T, parameters: Optional[Dict[str, Any]] = None
) -> Optional[List[Collection[Any]]]:
return StrictSequenceCut.holds(obj, parameters)