Source code for pm4py.algo.discovery.inductive.fall_through.empty_traces

'''
    PM4Py – A Process Mining Library for Python
Copyright (C) 2024 Process Intelligence Solutions UG (haftungsbeschränkt)

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as
published by the Free Software Foundation, either version 3 of the
License, or any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU Affero General Public License for more details.

You should have received a copy of the GNU Affero General Public License
along with this program.  If not, see this software project's root or
visit <https://www.gnu.org/licenses/>.

Website: https://processintelligence.solutions
Contact: info@processintelligence.solutions
'''
from collections import Counter
from typing import Tuple, List, Optional, Dict, Any

from pm4py.algo.discovery.inductive.dtypes.im_ds import (
    IMDataStructureUVCL,
    IMDataStructureDFG,
)
from pm4py.algo.discovery.inductive.fall_through.abc import FallThrough
from pm4py.objects.process_tree.obj import ProcessTree, Operator
from pm4py.objects.dfg.obj import DFG
from pm4py.algo.discovery.inductive.dtypes.im_dfg import InductiveDFG
from copy import copy


[docs] class EmptyTracesUVCL(FallThrough[IMDataStructureUVCL]):
[docs] @classmethod def apply( cls, obj: IMDataStructureUVCL, pool=None, manager=None, parameters: Optional[Dict[str, Any]] = None, ) -> Optional[Tuple[ProcessTree, List[IMDataStructureUVCL]]]: if cls.holds(obj, parameters): data_structure = copy(obj.data_structure) del data_structure[()] if data_structure: return ProcessTree(operator=Operator.XOR), [ IMDataStructureUVCL(Counter()), IMDataStructureUVCL(data_structure), ] else: return ProcessTree(), [] else: return None
[docs] @classmethod def holds( cls, obj: IMDataStructureUVCL, parameters: Optional[Dict[str, Any]] = None, ) -> bool: return len(list(filter(lambda t: len(t) == 0, obj.data_structure))) > 0
[docs] class EmptyTracesDFG(FallThrough[IMDataStructureDFG]):
[docs] @classmethod def apply( cls, obj: IMDataStructureDFG, pool=None, manager=None, parameters: Optional[Dict[str, Any]] = None, ) -> Optional[Tuple[ProcessTree, List[IMDataStructureDFG]]]: if cls.holds(obj, parameters): # If the DFG itself is empty, the log contains only empty traces -> just τ dfg = obj.data_structure.dfg is_empty = ( len(dfg.graph) == 0 and len(dfg.start_activities) == 0 and len(dfg.end_activities) == 0 ) if is_empty: return ProcessTree(), [] # Otherwise, split: XOR(τ, non-empty part) return ProcessTree(operator=Operator.XOR), [ IMDataStructureDFG(InductiveDFG(DFG())), # note: skip intentionally False here; τ is already handled on the XOR IMDataStructureDFG(InductiveDFG(obj.data_structure.dfg)), ] return None
[docs] @classmethod def holds( cls, obj: IMDataStructureDFG, parameters: Optional[Dict[str, Any]] = None, ) -> bool: return obj.data_structure.skip