Source code for pm4py.algo.discovery.ocel.ocdfg.variants.classic

'''
    PM4Py – A Process Mining Library for Python
Copyright (C) 2024 Process Intelligence Solutions UG (haftungsbeschränkt)

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as
published by the Free Software Foundation, either version 3 of the
License, or any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU Affero General Public License for more details.

You should have received a copy of the GNU Affero General Public License
along with this program.  If not, see this software project's root or
visit <https://www.gnu.org/licenses/>.

Website: https://processintelligence.solutions
Contact: info@processintelligence.solutions
'''
from typing import Optional, Dict, Any
from enum import Enum
from pm4py.util import exec_utils, pandas_utils
from pm4py.objects.ocel import constants as ocel_constants
from pm4py.objects.ocel.obj import OCEL
from pm4py.statistics.ocel import act_ot_dependent, act_utils, edge_metrics


[docs] class Parameters(Enum): EVENT_ACTIVITY = ocel_constants.PARAM_EVENT_ACTIVITY OBJECT_TYPE = ocel_constants.PARAM_OBJECT_TYPE COMPUTE_EDGES_PERFORMANCE = "compute_edges_performance"
[docs] def apply( ocel: OCEL, parameters: Optional[Dict[Any, Any]] = None ) -> Dict[str, Any]: """ Discovers an OC-DFG model from an object-centric event log. Reference paper: Berti, Alessandro, and Wil van der Aalst. "Extracting multiple viewpoint models from relational databases." Data-Driven Process Discovery and Analysis. Springer, Cham, 2018. 24-51. Parameters ----------------- ocel Object-centric event log parameters Parameters of the algorithm, including: - Parameters.EVENT_ACTIVITY => the attribute to be used as activity - Parameters.OBJECT_TYPE => the attribute to be used as object type - Parameters.COMPUTE_EDGES_PERFORMANCE => (boolean) enables/disables the computation of the performance on the edges Returns ----------------- ocdfg Object-centric directly-follows graph, expressed as a dictionary containing the following properties: - activities: complete set of activities derived from the object-centric event log - object_types: complete set of object types derived from the object-centric event log - edges: dictionary connecting each object type to a set of directly-followed arcs between activities - activities_indep: dictionary linking each activity, regardless of the object type - activities_ot: dictionary linking each object type to another dictionary - start_activities: dictionary linking each object type to start activities - end_activities: dictionary linking each object type to end activities """ if parameters is None: parameters = {} # Extract parameter values once object_type = exec_utils.get_param_value( Parameters.OBJECT_TYPE, parameters, ocel.object_type_column ) event_activity = exec_utils.get_param_value( Parameters.EVENT_ACTIVITY, parameters, ocel.event_activity ) compute_edges_performance = exec_utils.get_param_value( Parameters.COMPUTE_EDGES_PERFORMANCE, parameters, True ) # Pre-compute activities and object types (used multiple times) activities = set(pandas_utils.format_unique(ocel.events[event_activity].unique())) object_types = set(pandas_utils.format_unique(ocel.objects[object_type].unique())) # Initialize result dictionary with pre-computed values ret = { "activities": activities, "object_types": object_types, "edges": {}, "activities_indep": {}, "activities_ot": {}, "start_activities": {}, "end_activities": {}, "edges_performance": {"event_couples": {}, "total_objects": {}} } # Process object-type independent associations (shared computation) ot_independent = act_utils.find_associations_from_ocel( ocel, parameters=parameters ) ret["activities_indep"] = { "events": act_utils.aggregate_events(ot_independent), "unique_objects": act_utils.aggregate_unique_objects(ot_independent), "total_objects": act_utils.aggregate_total_objects(ot_independent) } # Process object-type dependent associations (shared computation) ot_dependent = act_ot_dependent.find_associations_from_ocel( ocel, parameters=parameters ) ret["activities_ot"] = { "events": act_ot_dependent.aggregate_events(ot_dependent), "unique_objects": act_ot_dependent.aggregate_unique_objects(ot_dependent), "total_objects": act_ot_dependent.aggregate_total_objects(ot_dependent) } # Process start activities start_parameters = {**parameters, "prefiltering": "start"} ot_dependent_start = act_ot_dependent.find_associations_from_ocel( ocel, parameters=start_parameters ) ret["start_activities"] = { "events": act_ot_dependent.aggregate_events(ot_dependent_start), "unique_objects": act_ot_dependent.aggregate_unique_objects(ot_dependent_start), "total_objects": act_ot_dependent.aggregate_total_objects(ot_dependent_start) } # Process end activities end_parameters = {**parameters, "prefiltering": "end"} ot_dependent_end = act_ot_dependent.find_associations_from_ocel( ocel, parameters=end_parameters ) ret["end_activities"] = { "events": act_ot_dependent.aggregate_events(ot_dependent_end), "unique_objects": act_ot_dependent.aggregate_unique_objects(ot_dependent_end), "total_objects": act_ot_dependent.aggregate_total_objects(ot_dependent_end) } # Process edges edges = edge_metrics.find_associations_per_edge( ocel, parameters=end_parameters ) ret["edges"] = { "event_couples": edge_metrics.aggregate_ev_couples(edges), "unique_objects": edge_metrics.aggregate_unique_objects(edges), "total_objects": edge_metrics.aggregate_total_objects(edges) } # Only compute performance metrics if needed if compute_edges_performance: ret["edges_performance"] = { "event_couples": edge_metrics.performance_calculation_ocel_aggregation( ocel, ret["edges"]["event_couples"], parameters=parameters ), "total_objects": edge_metrics.performance_calculation_ocel_aggregation( ocel, ret["edges"]["total_objects"], parameters=parameters ) } return ret