Source code for pm4py.algo.discovery.performance_spectrum.algorithm
'''
PM4Py – A Process Mining Library for Python
Copyright (C) 2024 Process Intelligence Solutions UG (haftungsbeschränkt)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as
published by the Free Software Foundation, either version 3 of the
License, or any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public License
along with this program. If not, see this software project's root or
visit <https://www.gnu.org/licenses/>.
Website: https://processintelligence.solutions
Contact: info@processintelligence.solutions
'''
from pm4py.algo.discovery.performance_spectrum.variants import (
dataframe,
log,
dataframe_disconnected,
log_disconnected,
)
from pm4py.util import exec_utils
from enum import Enum
from pm4py.util import constants, pandas_utils
from typing import Optional, Dict, Any, Union, List
from pm4py.objects.log.obj import EventLog, EventStream
import pandas as pd
[docs]
class Parameters(Enum):
ACTIVITY_KEY = constants.PARAMETER_CONSTANT_ACTIVITY_KEY
TIMESTAMP_KEY = constants.PARAMETER_CONSTANT_TIMESTAMP_KEY
CASE_ID_KEY = constants.PARAMETER_CONSTANT_CASEID_KEY
ATTRIBUTE_KEY = constants.PARAMETER_CONSTANT_ATTRIBUTE_KEY
PARAMETER_SAMPLE_SIZE = "sample_size"
[docs]
class Outputs(Enum):
LIST_ACTIVITIES = "list_activities"
POINTS = "points"
[docs]
class Variants(Enum):
DATAFRAME = dataframe
LOG = log
DATAFRAME_DISCONNECTED = dataframe_disconnected
LOG_DISCONNECTED = log_disconnected
[docs]
def apply(
log: Union[EventLog, EventStream, pd.DataFrame],
list_activities: List[str],
variant=None,
parameters: Optional[Dict[Any, Any]] = None,
) -> Dict[str, Any]:
"""
Finds the performance spectrum provided a log/dataframe
and a list of activities
Parameters
-------------
log
Event log/Dataframe
list_activities
List of activities interesting for the performance spectrum (at least two)
variant
Variant to be used (see Variants Enum)
parameters
Parameters of the algorithm, including:
- Parameters.ACTIVITY_KEY
- Parameters.TIMESTAMP_KEY
Returns
-------------
ps
Performance spectrum object (dictionary)
"""
from pm4py.objects.conversion.log import converter as log_conversion
if parameters is None:
parameters = {}
sample_size = exec_utils.get_param_value(
Parameters.PARAMETER_SAMPLE_SIZE, parameters, 10000
)
if len(list_activities) < 2:
raise Exception(
"performance spectrum can be applied providing at least two activities!"
)
points = None
if pandas_utils.check_is_pandas_dataframe(log):
if variant is None:
variant = Variants.DATAFRAME
points = exec_utils.get_variant(variant).apply(
log, list_activities, sample_size, parameters
)
if points is None:
if variant is None:
variant = Variants.LOG
points = exec_utils.get_variant(variant).apply(
log_conversion.apply(
log,
variant=log_conversion.Variants.TO_EVENT_LOG,
parameters=parameters,
),
list_activities,
sample_size,
parameters,
)
ps = {
Outputs.LIST_ACTIVITIES.value: list_activities,
Outputs.POINTS.value: points,
}
return ps