Source code for pm4py.algo.discovery.performance_spectrum.algorithm

'''
    PM4Py – A Process Mining Library for Python
Copyright (C) 2024 Process Intelligence Solutions UG (haftungsbeschränkt)

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as
published by the Free Software Foundation, either version 3 of the
License, or any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU Affero General Public License for more details.

You should have received a copy of the GNU Affero General Public License
along with this program.  If not, see this software project's root or
visit <https://www.gnu.org/licenses/>.

Website: https://processintelligence.solutions
Contact: info@processintelligence.solutions
'''
from pm4py.algo.discovery.performance_spectrum.variants import (
    dataframe,
    log,
    dataframe_disconnected,
    log_disconnected,
)
from pm4py.util import exec_utils
from enum import Enum
from pm4py.util import constants, pandas_utils
from typing import Optional, Dict, Any, Union, List
from pm4py.objects.log.obj import EventLog, EventStream
import pandas as pd


[docs] class Parameters(Enum): ACTIVITY_KEY = constants.PARAMETER_CONSTANT_ACTIVITY_KEY TIMESTAMP_KEY = constants.PARAMETER_CONSTANT_TIMESTAMP_KEY CASE_ID_KEY = constants.PARAMETER_CONSTANT_CASEID_KEY ATTRIBUTE_KEY = constants.PARAMETER_CONSTANT_ATTRIBUTE_KEY PARAMETER_SAMPLE_SIZE = "sample_size"
[docs] class Outputs(Enum): LIST_ACTIVITIES = "list_activities" POINTS = "points"
[docs] class Variants(Enum): DATAFRAME = dataframe LOG = log DATAFRAME_DISCONNECTED = dataframe_disconnected LOG_DISCONNECTED = log_disconnected
[docs] def apply( log: Union[EventLog, EventStream, pd.DataFrame], list_activities: List[str], variant=None, parameters: Optional[Dict[Any, Any]] = None, ) -> Dict[str, Any]: """ Finds the performance spectrum provided a log/dataframe and a list of activities Parameters ------------- log Event log/Dataframe list_activities List of activities interesting for the performance spectrum (at least two) variant Variant to be used (see Variants Enum) parameters Parameters of the algorithm, including: - Parameters.ACTIVITY_KEY - Parameters.TIMESTAMP_KEY Returns ------------- ps Performance spectrum object (dictionary) """ from pm4py.objects.conversion.log import converter as log_conversion if parameters is None: parameters = {} sample_size = exec_utils.get_param_value( Parameters.PARAMETER_SAMPLE_SIZE, parameters, 10000 ) if len(list_activities) < 2: raise Exception( "performance spectrum can be applied providing at least two activities!" ) points = None if pandas_utils.check_is_pandas_dataframe(log): if variant is None: variant = Variants.DATAFRAME points = exec_utils.get_variant(variant).apply( log, list_activities, sample_size, parameters ) if points is None: if variant is None: variant = Variants.LOG points = exec_utils.get_variant(variant).apply( log_conversion.apply( log, variant=log_conversion.Variants.TO_EVENT_LOG, parameters=parameters, ), list_activities, sample_size, parameters, ) ps = { Outputs.LIST_ACTIVITIES.value: list_activities, Outputs.POINTS.value: points, } return ps