Source code for pm4py.algo.discovery.performance_spectrum.variants.dataframe

'''
    PM4Py – A Process Mining Library for Python
Copyright (C) 2024 Process Intelligence Solutions UG (haftungsbeschränkt)

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as
published by the Free Software Foundation, either version 3 of the
License, or any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU Affero General Public License for more details.

You should have received a copy of the GNU Affero General Public License
along with this program.  If not, see this software project's root or
visit <https://www.gnu.org/licenses/>.

Website: https://processintelligence.solutions
Contact: info@processintelligence.solutions
'''
from enum import Enum

from pm4py.util import constants
from pm4py.util import exec_utils, pandas_utils
from pm4py.util import xes_constants as xes
from pm4py.util.constants import CASE_CONCEPT_NAME
from typing import Optional, Dict, Any, Union, List
import pandas as pd


[docs] class Parameters(Enum): ACTIVITY_KEY = constants.PARAMETER_CONSTANT_ACTIVITY_KEY TIMESTAMP_KEY = constants.PARAMETER_CONSTANT_TIMESTAMP_KEY CASE_ID_KEY = constants.PARAMETER_CONSTANT_CASEID_KEY ATTRIBUTE_KEY = constants.PARAMETER_CONSTANT_ATTRIBUTE_KEY PARAMETER_SAMPLE_SIZE = "sample_size" SORT_LOG_REQUIRED = "sort_log_required"
[docs] def apply( dataframe: pd.DataFrame, list_activities: List[str], sample_size: int, parameters: Optional[Dict[Union[str, Parameters], Any]] = None, ) -> Dict[str, Any]: """ Finds the performance spectrum provided a dataframe and a list of activities Parameters ------------- dataframe Dataframe list_activities List of activities interesting for the performance spectrum (at least two) sample_size Size of the sample parameters Parameters of the algorithm, including: - Parameters.ACTIVITY_KEY - Parameters.TIMESTAMP_KEY - Parameters.CASE_ID_KEY Returns ------------- points Points of the performance spectrum """ if parameters is None: parameters = {} import pandas as pd import numpy as np case_id_glue = exec_utils.get_param_value( Parameters.CASE_ID_KEY, parameters, CASE_CONCEPT_NAME ) activity_key = exec_utils.get_param_value( Parameters.ACTIVITY_KEY, parameters, xes.DEFAULT_NAME_KEY ) timestamp_key = exec_utils.get_param_value( Parameters.TIMESTAMP_KEY, parameters, xes.DEFAULT_TIMESTAMP_KEY ) sort_log_required = exec_utils.get_param_value( Parameters.SORT_LOG_REQUIRED, parameters, True ) dataframe = dataframe[[case_id_glue, activity_key, timestamp_key]] dataframe[activity_key] = dataframe[activity_key].astype("string") dataframe = dataframe[dataframe[activity_key].isin(list_activities)] dataframe = pandas_utils.insert_index( dataframe, constants.DEFAULT_EVENT_INDEX_KEY ) if sort_log_required: dataframe = dataframe.sort_values( [case_id_glue, timestamp_key, constants.DEFAULT_EVENT_INDEX_KEY] ) dataframe[timestamp_key] = ( dataframe[timestamp_key].astype(np.int64) / 10**9 ) def key(k, n): return k + str(n) # create a dataframe with all needed columns to check for the activities # pattern dfs = [ dataframe.add_suffix(str(i)).shift(-i) for i in range(len(list_activities)) ] dataframe = pandas_utils.concat(dfs, axis=1) # keep only rows that belong to exactly one case for i in range(len(list_activities) - 1): dataframe = dataframe[ dataframe[key(case_id_glue, i)] == dataframe[key(case_id_glue, i + 1)] ] column_list = [key(activity_key, i) for i in range(len(list_activities))] pattern = "".join(list_activities) # keep only rows that have the desired activities pattern matches = dataframe[ np.equal(dataframe[column_list].agg("".join, axis=1), pattern) ] if len(matches) > sample_size: matches = matches.sample(n=sample_size) filt_col_names = [ timestamp_key + str(i) for i in range(len(list_activities)) ] points = pandas_utils.to_dict_records(matches) points = [[p[tk] for tk in filt_col_names] for p in points] points = sorted(points, key=lambda x: x[0]) return points