Source code for pm4py.algo.discovery.performance_spectrum.variants.dataframe_disconnected

'''
    PM4Py – A Process Mining Library for Python
Copyright (C) 2024 Process Intelligence Solutions UG (haftungsbeschränkt)

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as
published by the Free Software Foundation, either version 3 of the
License, or any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU Affero General Public License for more details.

You should have received a copy of the GNU Affero General Public License
along with this program.  If not, see this software project's root or
visit <https://www.gnu.org/licenses/>.

Website: https://processintelligence.solutions
Contact: info@processintelligence.solutions
'''
from enum import Enum

import numpy as np

from pm4py.util import constants, points_subset
from pm4py.util import exec_utils, pandas_utils
from pm4py.util import xes_constants as xes
from typing import Optional, Dict, Any, Union, List
import pandas as pd


[docs] class Parameters(Enum): ACTIVITY_KEY = constants.PARAMETER_CONSTANT_ACTIVITY_KEY TIMESTAMP_KEY = constants.PARAMETER_CONSTANT_TIMESTAMP_KEY CASE_ID_KEY = constants.PARAMETER_CONSTANT_CASEID_KEY PARAMETER_SAMPLE_SIZE = "sample_size" SORT_LOG_REQUIRED = "sort_log_required"
[docs] def gen_patterns(pattern, length): return [ "".join(pattern[i: i + length]) for i in range(len(pattern) - (length - 1)) ]
[docs] def apply( dataframe: pd.DataFrame, list_activities: List[str], sample_size: int, parameters: Optional[Dict[Union[str, Parameters], Any]] = None, ) -> Dict[str, Any]: """ Finds the disconnected performance spectrum provided a dataframe and a list of activities Parameters ------------- dataframe Dataframe list_activities List of activities interesting for the performance spectrum (at least two) sample_size Size of the sample parameters Parameters of the algorithm, including: - Parameters.ACTIVITY_KEY - Parameters.TIMESTAMP_KEY - Parameters.CASE_ID_KEY Returns ------------- points Points of the performance spectrum """ if parameters is None: parameters = {} case_id_glue = exec_utils.get_param_value( Parameters.CASE_ID_KEY, parameters, constants.CASE_CONCEPT_NAME ) activity_key = exec_utils.get_param_value( Parameters.ACTIVITY_KEY, parameters, xes.DEFAULT_NAME_KEY ) timestamp_key = exec_utils.get_param_value( Parameters.TIMESTAMP_KEY, parameters, xes.DEFAULT_TIMESTAMP_KEY ) sort_log_required = exec_utils.get_param_value( Parameters.SORT_LOG_REQUIRED, parameters, True ) dataframe = dataframe[[case_id_glue, activity_key, timestamp_key]] dataframe = dataframe[dataframe[activity_key].isin(list_activities)] dataframe = pandas_utils.insert_index( dataframe, constants.DEFAULT_EVENT_INDEX_KEY ) if sort_log_required: dataframe = dataframe.sort_values( [case_id_glue, timestamp_key, constants.DEFAULT_EVENT_INDEX_KEY] ) dataframe[timestamp_key] = ( dataframe[timestamp_key].astype(np.int64) / 10**9 ) all_patterns = [ ( len(list_activities) - i, gen_patterns(list_activities, len(list_activities) - i), ) for i in range(len(list_activities) - 1) ] def key(k, n): return k + str(n) def to_points(match, l): return { "case_id": match[key(case_id_glue, 0)], "points": [ (match[key(activity_key, i)], match[key(timestamp_key, i)]) for i in range(l) ], } points = [] for l, patterns in all_patterns: # concat shifted and suffixed dataframes to get a dataframe that allows # to check for the patterns dfs = [dataframe.add_suffix(str(i)).shift(-i) for i in range(l)] df_merged = pandas_utils.concat(dfs, axis=1) indices = [shift_index(dfs[i].index, i) for i in range(len(dfs))] mindex = pd.MultiIndex.from_arrays(indices) df_merged = df_merged.set_index(mindex) for i in range(l - 1): df_merged = df_merged[ df_merged[key(case_id_glue, i)] == df_merged[key(case_id_glue, i + 1)] ] column_list = [key(activity_key, i) for i in range(l)] matches = df_merged[ np.isin(df_merged[column_list].sum(axis=1), patterns) ] points.extend([to_points(m, l) for m in matches.to_dict("records")]) # drop rows of this match to not discover subsets of this match again dataframe = dataframe.drop( [int(i) for indices in matches.index for i in indices[:-1]] ) pass points = sorted( points, key=lambda x: min(x["points"], key=lambda x: x[1])[1] ) if len(points) > sample_size: points = points_subset.pick_chosen_points_list(sample_size, points) return points
[docs] def shift_index(index, n): if n == 0: return list(index) nones = [None for _ in range(n)] return list(index[n:]) + nones