Source code for pm4py.algo.discovery.performance_spectrum.variants.log_disconnected

'''
    PM4Py – A Process Mining Library for Python
Copyright (C) 2024 Process Intelligence Solutions UG (haftungsbeschränkt)

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as
published by the Free Software Foundation, either version 3 of the
License, or any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU Affero General Public License for more details.

You should have received a copy of the GNU Affero General Public License
along with this program.  If not, see this software project's root or
visit <https://www.gnu.org/licenses/>.

Website: https://processintelligence.solutions
Contact: info@processintelligence.solutions
'''
from enum import Enum

from pm4py.objects.log.util import sorting
from pm4py.util import constants, exec_utils
from pm4py.util import points_subset
from pm4py.util import xes_constants as xes
from pm4py.objects.log.util import basic_filter
from typing import Optional, Dict, Any, Union, List
from pm4py.objects.log.obj import EventLog


[docs] class Parameters(Enum): ACTIVITY_KEY = constants.PARAMETER_CONSTANT_ACTIVITY_KEY TIMESTAMP_KEY = constants.PARAMETER_CONSTANT_TIMESTAMP_KEY CASE_ID_KEY = constants.PARAMETER_CONSTANT_CASEID_KEY ATTRIBUTE_KEY = constants.PARAMETER_CONSTANT_ATTRIBUTE_KEY PARAMETER_SAMPLE_SIZE = "sample_size" SORT_LOG_REQUIRED = "sort_log_required"
[docs] def apply( log: EventLog, list_activities: List[str], sample_size: int, parameters: Optional[Dict[Union[str, Parameters], Any]] = None, ) -> Dict[str, Any]: """ Finds the disconnected performance spectrum provided a log and a list of activities Parameters ------------- log Log list_activities List of activities interesting for the performance spectrum (at least two) sample_size Size of the sample parameters Parameters of the algorithm, including: - Parameters.ACTIVITY_KEY - Parameters.TIMESTAMP_KEY Returns ------------- points Points of the performance spectrum """ if parameters is None: parameters = {} sort_log_required = exec_utils.get_param_value( Parameters.SORT_LOG_REQUIRED, parameters, True ) all_acti_combs = set( tuple(list_activities[j: j + i]) for i in range(2, len(list_activities) + 1) for j in range(0, len(list_activities) - i + 1) ) two_acti_combs = set( (list_activities[i], list_activities[i + 1]) for i in range(len(list_activities) - 1) ) activity_key = exec_utils.get_param_value( Parameters.ACTIVITY_KEY, parameters, xes.DEFAULT_NAME_KEY ) timestamp_key = exec_utils.get_param_value( Parameters.TIMESTAMP_KEY, parameters, xes.DEFAULT_TIMESTAMP_KEY ) case_id_key = exec_utils.get_param_value( Parameters.CASE_ID_KEY, parameters, xes.DEFAULT_TRACEID_KEY ) parameters[Parameters.ATTRIBUTE_KEY] = activity_key log = basic_filter.filter_log_events_attr( log, list_activities, parameters=parameters ) if sort_log_required: log = sorting.sort_timestamp_log(log, timestamp_key=timestamp_key) points = [] for trace in log: matches = [ (i, i + 1) for i in range(len(trace) - 1) if (trace[i][activity_key], trace[i + 1][activity_key]) in two_acti_combs ] i = 0 while i < len(matches) - 1: matchAct = ( trace[mi][activity_key] for mi in (matches[i] + matches[i + 1][1:]) ) if ( matches[i][-1] == matches[i + 1][0] and matchAct in all_acti_combs ): matches[i] = matches[i] + matches[i + 1][1:] del matches[i + 1] i = 0 else: i += 1 if matches: matches = set(matches) timest_comb = [ { "points": [ ( trace[i][activity_key], trace[i][timestamp_key].timestamp(), ) for i in match ] } for match in matches ] for p in timest_comb: p["case_id"] = trace.attributes[case_id_key] points += timest_comb points = sorted( points, key=lambda x: min(x["points"], key=lambda x: x[1])[1] ) if len(points) > sample_size: points = points_subset.pick_chosen_points_list(sample_size, points) return points