Source code for pm4py.algo.discovery.powl.algorithm
'''
PM4Py – A Process Mining Library for Python
Copyright (C) 2024 Process Intelligence Solutions UG (haftungsbeschränkt)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as
published by the Free Software Foundation, either version 3 of the
License, or any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public License
along with this program. If not, see this software project's root or
visit <https://www.gnu.org/licenses/>.
Website: https://processintelligence.solutions
Contact: info@processintelligence.solutions
'''
from pm4py.algo.discovery.inductive.dtypes.im_ds import IMDataStructureUVCL
from pm4py.algo.discovery.powl.inductive.variants.im_dynamic_clustering_frequencies import (
POWLInductiveMinerDynamicClusteringFrequency, )
from pm4py.algo.discovery.powl.inductive.variants.im_tree import IMBasePOWL
from pm4py.algo.discovery.powl.inductive.variants.im_brute_force import (
POWLInductiveMinerBruteForce,
)
from pm4py.algo.discovery.powl.inductive.variants.im_maximal import (
POWLInductiveMinerMaximalOrder,
)
from pm4py.algo.discovery.powl.inductive.variants.powl_discovery_varaints import (
POWLDiscoveryVariant, )
from pm4py import util
from pm4py.algo.discovery.inductive.algorithm import Parameters
from pm4py.objects.powl.obj import POWL
from pm4py.util import xes_constants as xes_util
from pm4py.util.compression import util as comut
from pm4py.util.compression.dtypes import UVCL
from pm4py.util import exec_utils
from typing import Optional, Dict, Any, Union, Type
from pm4py.objects.log.obj import EventLog
import pandas as pd
[docs]
def get_variant(variant: POWLDiscoveryVariant) -> Type[IMBasePOWL]:
if variant == POWLDiscoveryVariant.TREE:
return IMBasePOWL
elif variant == POWLDiscoveryVariant.BRUTE_FORCE:
return POWLInductiveMinerBruteForce
elif variant == POWLDiscoveryVariant.MAXIMAL:
return POWLInductiveMinerMaximalOrder
elif variant == POWLDiscoveryVariant.DYNAMIC_CLUSTERING:
return POWLInductiveMinerDynamicClusteringFrequency
else:
raise Exception("Invalid Variant!")
[docs]
def apply(
obj: Union[EventLog, pd.DataFrame, UVCL],
parameters: Optional[Dict[Any, Any]] = None,
variant=POWLDiscoveryVariant.MAXIMAL,
) -> POWL:
if parameters is None:
parameters = {}
ack = exec_utils.get_param_value(
Parameters.ACTIVITY_KEY, parameters, xes_util.DEFAULT_NAME_KEY
)
tk = exec_utils.get_param_value(
Parameters.TIMESTAMP_KEY, parameters, xes_util.DEFAULT_TIMESTAMP_KEY
)
cidk = exec_utils.get_param_value(
Parameters.CASE_ID_KEY, parameters, util.constants.CASE_CONCEPT_NAME
)
if type(obj) in [EventLog, pd.DataFrame]:
uvcl = comut.get_variants(
comut.project_univariate(
obj, key=ack, df_glue=cidk, df_sorting_criterion_key=tk
)
)
else:
uvcl = obj
algorithm = get_variant(variant)
im = algorithm(parameters)
res = im.apply(IMDataStructureUVCL(uvcl), parameters)
res = res.simplify()
return res