'''
PM4Py – A Process Mining Library for Python
Copyright (C) 2024 Process Intelligence Solutions UG (haftungsbeschränkt)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as
published by the Free Software Foundation, either version 3 of the
License, or any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public License
along with this program. If not, see this software project's root or
visit <https://www.gnu.org/licenses/>.
Website: https://processintelligence.solutions
Contact: info@processintelligence.solutions
'''
from itertools import combinations
from typing import Optional, Tuple, List, TypeVar, Generic, Dict, Any
from pm4py.algo.discovery.inductive.dtypes.im_ds import IMDataStructureUVCL
from pm4py.algo.discovery.powl.inductive.fall_through.empty_traces import (
POWLEmptyTracesUVCL,
)
from pm4py.algo.discovery.inductive.variants.abc import InductiveMinerFramework
from pm4py.algo.discovery.powl.inductive.base_case.factory import (
BaseCaseFactory,
)
from pm4py.algo.discovery.powl.inductive.cuts.factory import CutFactory
from pm4py.algo.discovery.powl.inductive.fall_through.factory import (
FallThroughFactory,
)
from pm4py.algo.discovery.powl.inductive.utils.filtering import (
FILTERING_TYPE,
FilteringType,
filter_most_frequent_variants,
FILTERING_THRESHOLD,
filter_most_frequent_variants_with_decreasing_factor,
DEFAULT_FILTERING_TYPE,
)
from pm4py.algo.discovery.powl.inductive.variants.powl_discovery_varaints import (
POWLDiscoveryVariant, )
from pm4py.objects.powl.obj import (
POWL,
StrictPartialOrder,
Sequence,
OperatorPOWL,
)
T = TypeVar("T", bound=IMDataStructureUVCL)
[docs]
class IMBasePOWL(Generic[T], InductiveMinerFramework[T]):
[docs]
def instance(self) -> POWLDiscoveryVariant:
return POWLDiscoveryVariant.TREE
[docs]
def apply(
self,
obj: IMDataStructureUVCL,
parameters: Optional[Dict[str, Any]] = None,
) -> POWL:
if FILTERING_TYPE not in parameters.keys():
filtering_type = DEFAULT_FILTERING_TYPE
else:
filtering_type = parameters[FILTERING_TYPE]
if filtering_type not in FilteringType:
raise KeyError(
"Invalid FILTERING_TYPE: " + str(filtering_type)
)
empty_traces = POWLEmptyTracesUVCL.apply(obj, parameters)
if empty_traces is not None:
return self._recurse(empty_traces[0], empty_traces[1], parameters)
powl = self.apply_base_cases(obj, parameters)
if powl is not None:
return powl
cut = self.find_cut(obj, parameters)
if cut is not None:
powl = self._recurse(cut[0], cut[1], parameters=parameters)
if powl is not None:
return powl
else:
if filtering_type is FilteringType.DYNAMIC:
filtered_log = filter_most_frequent_variants(
obj.data_structure
)
if len(filtered_log.data_structure) > 0:
return self.apply(filtered_log, parameters=parameters)
elif filtering_type is FilteringType.DECREASING_FACTOR:
if FILTERING_THRESHOLD in parameters.keys():
t = parameters[FILTERING_THRESHOLD]
if isinstance(t, float) and 0 <= t < 1:
if t > 0:
filtered_log = filter_most_frequent_variants_with_decreasing_factor(
obj.data_structure, decreasing_factor=t)
if (
0
< len(filtered_log.data_structure)
< len(obj.data_structure)
):
return self.apply(
filtered_log, parameters=parameters
)
else:
raise KeyError("Invalid filtering threshold!")
else:
raise KeyError("Invalid filtering type!")
ft = self.fall_through(obj, parameters)
return self._recurse(ft[0], ft[1], parameters=parameters)
[docs]
def apply_base_cases(
self, obj: T, parameters: Optional[Dict[str, Any]] = None
) -> Optional[POWL]:
return BaseCaseFactory.apply_base_cases(obj, parameters=parameters)
[docs]
def find_cut(
self, obj: T, parameters: Optional[Dict[str, Any]] = None
) -> Optional[Tuple[POWL, List[T]]]:
return CutFactory.find_cut(obj, parameters=parameters)
[docs]
def fall_through(
self, obj: T, parameters: Optional[Dict[str, Any]] = None
) -> Tuple[POWL, List[T]]:
return FallThroughFactory.fall_through(
obj, self._pool, self._manager, parameters=parameters
)
def _recurse(
self,
powl: POWL,
objs: List[T],
parameters: Optional[Dict[str, Any]] = None,
):
children = [self.apply(obj, parameters=parameters) for obj in objs]
if isinstance(powl, StrictPartialOrder):
powl_new = StrictPartialOrder(children)
for i, j in combinations(range(len(powl.children)), 2):
if powl.order.is_edge_id(i, j):
powl_new.order.add_edge(children[i], children[j])
elif powl.order.is_edge_id(j, i):
powl_new.order.add_edge(children[j], children[i])
return powl_new
else:
new_powl = OperatorPOWL(operator=powl.operator, children=children)
return new_powl