Source code for pm4py.algo.discovery.powl.inductive.variants.im_tree

'''
    PM4Py – A Process Mining Library for Python
Copyright (C) 2024 Process Intelligence Solutions UG (haftungsbeschränkt)

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as
published by the Free Software Foundation, either version 3 of the
License, or any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU Affero General Public License for more details.

You should have received a copy of the GNU Affero General Public License
along with this program.  If not, see this software project's root or
visit <https://www.gnu.org/licenses/>.

Website: https://processintelligence.solutions
Contact: info@processintelligence.solutions
'''

from itertools import combinations
from typing import Optional, Tuple, List, TypeVar, Generic, Dict, Any

from pm4py.algo.discovery.inductive.dtypes.im_ds import IMDataStructureUVCL
from pm4py.algo.discovery.powl.inductive.fall_through.empty_traces import (
    POWLEmptyTracesUVCL,
)
from pm4py.algo.discovery.inductive.variants.abc import InductiveMinerFramework

from pm4py.algo.discovery.powl.inductive.base_case.factory import (
    BaseCaseFactory,
)
from pm4py.algo.discovery.powl.inductive.cuts.factory import CutFactory
from pm4py.algo.discovery.powl.inductive.fall_through.factory import (
    FallThroughFactory,
)
from pm4py.algo.discovery.powl.inductive.utils.filtering import (
    FILTERING_TYPE,
    FilteringType,
    filter_most_frequent_variants,
    FILTERING_THRESHOLD,
    filter_most_frequent_variants_with_decreasing_factor,
    DEFAULT_FILTERING_TYPE,
)
from pm4py.algo.discovery.powl.inductive.variants.powl_discovery_varaints import (
    POWLDiscoveryVariant, )

from pm4py.objects.powl.obj import (
    POWL,
    StrictPartialOrder,
    Sequence,
    OperatorPOWL,
)

T = TypeVar("T", bound=IMDataStructureUVCL)


[docs] class IMBasePOWL(Generic[T], InductiveMinerFramework[T]):
[docs] def instance(self) -> POWLDiscoveryVariant: return POWLDiscoveryVariant.TREE
[docs] def apply( self, obj: IMDataStructureUVCL, parameters: Optional[Dict[str, Any]] = None, ) -> POWL: if FILTERING_TYPE not in parameters.keys(): filtering_type = DEFAULT_FILTERING_TYPE else: filtering_type = parameters[FILTERING_TYPE] if filtering_type not in FilteringType: raise KeyError( "Invalid FILTERING_TYPE: " + str(filtering_type) ) empty_traces = POWLEmptyTracesUVCL.apply(obj, parameters) if empty_traces is not None: return self._recurse(empty_traces[0], empty_traces[1], parameters) powl = self.apply_base_cases(obj, parameters) if powl is not None: return powl cut = self.find_cut(obj, parameters) if cut is not None: powl = self._recurse(cut[0], cut[1], parameters=parameters) if powl is not None: return powl else: if filtering_type is FilteringType.DYNAMIC: filtered_log = filter_most_frequent_variants( obj.data_structure ) if len(filtered_log.data_structure) > 0: return self.apply(filtered_log, parameters=parameters) elif filtering_type is FilteringType.DECREASING_FACTOR: if FILTERING_THRESHOLD in parameters.keys(): t = parameters[FILTERING_THRESHOLD] if isinstance(t, float) and 0 <= t < 1: if t > 0: filtered_log = filter_most_frequent_variants_with_decreasing_factor( obj.data_structure, decreasing_factor=t) if ( 0 < len(filtered_log.data_structure) < len(obj.data_structure) ): return self.apply( filtered_log, parameters=parameters ) else: raise KeyError("Invalid filtering threshold!") else: raise KeyError("Invalid filtering type!") ft = self.fall_through(obj, parameters) return self._recurse(ft[0], ft[1], parameters=parameters)
[docs] def apply_base_cases( self, obj: T, parameters: Optional[Dict[str, Any]] = None ) -> Optional[POWL]: return BaseCaseFactory.apply_base_cases(obj, parameters=parameters)
[docs] def find_cut( self, obj: T, parameters: Optional[Dict[str, Any]] = None ) -> Optional[Tuple[POWL, List[T]]]: return CutFactory.find_cut(obj, parameters=parameters)
[docs] def fall_through( self, obj: T, parameters: Optional[Dict[str, Any]] = None ) -> Tuple[POWL, List[T]]: return FallThroughFactory.fall_through( obj, self._pool, self._manager, parameters=parameters )
def _recurse( self, powl: POWL, objs: List[T], parameters: Optional[Dict[str, Any]] = None, ): children = [self.apply(obj, parameters=parameters) for obj in objs] if isinstance(powl, StrictPartialOrder): powl_new = StrictPartialOrder(children) for i, j in combinations(range(len(powl.children)), 2): if powl.order.is_edge_id(i, j): powl_new.order.add_edge(children[i], children[j]) elif powl.order.is_edge_id(j, i): powl_new.order.add_edge(children[j], children[i]) return powl_new else: new_powl = OperatorPOWL(operator=powl.operator, children=children) return new_powl