Source code for pm4py.algo.evaluation.algorithm

'''
    PM4Py – A Process Mining Library for Python
Copyright (C) 2024 Process Intelligence Solutions UG (haftungsbeschränkt)

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as
published by the Free Software Foundation, either version 3 of the
License, or any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU Affero General Public License for more details.

You should have received a copy of the GNU Affero General Public License
along with this program.  If not, see this software project's root or
visit <https://www.gnu.org/licenses/>.

Website: https://processintelligence.solutions
Contact: info@processintelligence.solutions
'''

from pm4py.algo.conformance.tokenreplay.variants import token_replay
from pm4py.algo.evaluation.generalization.variants import (
    token_based as generalization_token_based,
)
from pm4py.algo.evaluation.precision.variants import (
    etconformance_token as precision_token_based,
)
from pm4py.algo.evaluation.replay_fitness.variants import (
    token_replay as fitness_token_based,
)
from pm4py.algo.evaluation.simplicity.variants import (
    arc_degree as simplicity_arc_degree,
)
from pm4py.objects import log as log_lib
from pm4py.objects.conversion.log import converter as log_conversion
from pm4py.util import constants
from enum import Enum
from pm4py.util import exec_utils
from typing import Optional, Dict, Any, Union
from pm4py.objects.log.obj import EventLog
from pm4py.objects.petri_net.obj import PetriNet, Marking
import pandas as pd


[docs] class Parameters(Enum): ACTIVITY_KEY = constants.PARAMETER_CONSTANT_ACTIVITY_KEY PARAM_FITNESS_WEIGHT = "fitness_weight" PARAM_PRECISION_WEIGHT = "precision_weight" PARAM_SIMPLICITY_WEIGHT = "simplicity_weight" PARAM_GENERALIZATION_WEIGHT = "generalization_weight"
[docs] def apply( log: Union[EventLog, pd.DataFrame], net: PetriNet, initial_marking: Marking, final_marking: Marking, parameters: Optional[Dict[Union[str, Parameters], Any]] = None, ) -> Dict[str, float]: """ Calculates all metrics based on token-based replay and returns a unified dictionary Parameters ----------- log Log net Petri net initial_marking Initial marking final_marking Final marking parameters Parameters Returns ----------- dictionary Dictionary containing fitness, precision, generalization and simplicity; along with the average weight of these metrics """ if parameters is None: parameters = {} log = log_conversion.apply(log, parameters, log_conversion.TO_EVENT_LOG) activity_key = exec_utils.get_param_value( Parameters.ACTIVITY_KEY, parameters, log_lib.util.xes.DEFAULT_NAME_KEY ) fitness_weight = exec_utils.get_param_value( Parameters.PARAM_FITNESS_WEIGHT, parameters, 0.25 ) precision_weight = exec_utils.get_param_value( Parameters.PARAM_PRECISION_WEIGHT, parameters, 0.25 ) simplicity_weight = exec_utils.get_param_value( Parameters.PARAM_SIMPLICITY_WEIGHT, parameters, 0.25 ) generalization_weight = exec_utils.get_param_value( Parameters.PARAM_GENERALIZATION_WEIGHT, parameters, 0.25 ) sum_of_weights = ( fitness_weight + precision_weight + simplicity_weight + generalization_weight ) fitness_weight = fitness_weight / sum_of_weights precision_weight = precision_weight / sum_of_weights simplicity_weight = simplicity_weight / sum_of_weights generalization_weight = generalization_weight / sum_of_weights parameters_tr = {token_replay.Parameters.ACTIVITY_KEY: activity_key} aligned_traces = token_replay.apply( log, net, initial_marking, final_marking, parameters=parameters_tr ) parameters = {token_replay.Parameters.ACTIVITY_KEY: activity_key} fitness = fitness_token_based.evaluate(aligned_traces) precision = precision_token_based.apply( log, net, initial_marking, final_marking, parameters=parameters ) generalization = generalization_token_based.get_generalization( net, aligned_traces ) simplicity = simplicity_arc_degree.apply(net) metrics_average_weight = ( fitness_weight * fitness["log_fitness"] + precision_weight * precision + generalization_weight * generalization + simplicity_weight * simplicity ) fscore = 0.0 if (fitness["log_fitness"] + precision) > 0: fscore = (2 * fitness["log_fitness"] * precision) / ( fitness["log_fitness"] + precision ) dictionary = { "fitness": fitness, "precision": precision, "generalization": generalization, "simplicity": simplicity, "metricsAverageWeight": metrics_average_weight, "fscore": fscore, } return dictionary