Source code for pm4py.algo.evaluation.precision.dfg.algorithm

'''
    PM4Py – A Process Mining Library for Python
Copyright (C) 2024 Process Intelligence Solutions UG (haftungsbeschränkt)

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as
published by the Free Software Foundation, either version 3 of the
License, or any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU Affero General Public License for more details.

You should have received a copy of the GNU Affero General Public License
along with this program.  If not, see this software project's root or
visit <https://www.gnu.org/licenses/>.

Website: https://processintelligence.solutions
Contact: info@processintelligence.solutions
'''
from collections import Counter
from enum import Enum
from typing import Optional, Dict, Any, Union, Tuple

from pm4py.objects.conversion.log import converter as log_converter
from pm4py.objects.log.obj import EventLog, EventStream
from pm4py.util import exec_utils, xes_constants, constants


[docs] class Parameters(Enum): ACTIVITY_KEY = constants.PARAMETER_CONSTANT_ACTIVITY_KEY
def __is_allowed_prefix(exiting_activities, sa, prefix): if not prefix: return True if prefix[0] not in sa: return False prev_act = prefix[0] for i in range(1, len(prefix)): curr_act = prefix[i] if ( prev_act not in exiting_activities or curr_act not in exiting_activities[prev_act] ): return False prev_act = curr_act if not prefix[-1] in exiting_activities: return False return True
[docs] def apply( log: Union[EventLog, EventStream], dfg: Dict[Tuple[str, str], int], start_activities: Dict[str, int], end_activities: Dict[str, int], parameters: Optional[Dict[Union[str, Parameters], Any]] = None, ) -> float: """ Computes the precision of a directly-follows graph using the ETConformance approach Parameters --------------- log Event log dfg Directly-follows graph start_activities Start activities end_activities End activities parameters Parameters of the algorithm: - Parameters.ACTIVITY_KEY: the key to use Returns ---------------- precision Precision value """ if parameters is None: parameters = {} activity_key = exec_utils.get_param_value( Parameters.ACTIVITY_KEY, parameters, xes_constants.DEFAULT_NAME_KEY ) log = log_converter.apply( log, variant=log_converter.Variants.TO_EVENT_LOG, parameters=parameters ) precision = 1.0 sum_ee = 0 sum_at = 0 exiting_activities = {} for act_couple in dfg: if not act_couple[0] in exiting_activities: exiting_activities[act_couple[0]] = set() exiting_activities[act_couple[0]].add(act_couple[1]) prefixes = {} prefixes_count = Counter() for trace in log: prefix_act = [] for i in range(len(trace)): prefix_act_tuple = tuple(prefix_act) if prefix_act_tuple not in prefixes: prefixes[prefix_act_tuple] = set() prefixes_count[prefix_act_tuple] += 1 prefixes[prefix_act_tuple].add(trace[i][activity_key]) prefix_act.append(trace[i][activity_key]) for prefix in prefixes: if __is_allowed_prefix(exiting_activities, start_activities, prefix): log_transitions = prefixes[prefix] activated_transitions = ( set(start_activities.keys()) if not prefix else exiting_activities[prefix[-1]] ) escaping_edges = activated_transitions.difference(log_transitions) sum_ee += len(escaping_edges) * prefixes_count[prefix] sum_at += len(activated_transitions) * prefixes_count[prefix] if sum_at > 0: precision = 1 - float(sum_ee) / float(sum_at) return precision