Source code for pm4py.algo.evaluation.replay_fitness.variants.token_replay

'''
    PM4Py – A Process Mining Library for Python
Copyright (C) 2024 Process Intelligence Solutions UG (haftungsbeschränkt)

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as
published by the Free Software Foundation, either version 3 of the
License, or any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU Affero General Public License for more details.

You should have received a copy of the GNU Affero General Public License
along with this program.  If not, see this software project's root or 
visit <https://www.gnu.org/licenses/>.

Website: https://processintelligence.solutions
Contact: info@processintelligence.solutions
'''
from pm4py.algo.conformance.tokenreplay import algorithm as executor
from pm4py.algo.conformance.tokenreplay.variants import token_replay
from pm4py.util import exec_utils
from pm4py.util.xes_constants import DEFAULT_NAME_KEY
from enum import Enum
from pm4py.util import constants
from typing import Optional, Dict, Any, Union
from pm4py.objects.log.obj import EventLog
from pm4py.objects.petri_net.obj import PetriNet, Marking
from pm4py.util import typing


[docs] class Parameters(Enum): ACTIVITY_KEY = constants.PARAMETER_CONSTANT_ACTIVITY_KEY ATTRIBUTE_KEY = constants.PARAMETER_CONSTANT_ATTRIBUTE_KEY CASE_ID_KEY = constants.PARAMETER_CONSTANT_CASEID_KEY TOKEN_REPLAY_VARIANT = "token_replay_variant" CLEANING_TOKEN_FLOOD = "cleaning_token_flood" MULTIPROCESSING = "multiprocessing" SHOW_PROGRESS_BAR = "show_progress_bar"
[docs] def evaluate( aligned_traces: typing.ListAlignments, parameters: Optional[Dict[Union[str, Parameters], Any]] = None, ) -> Dict[str, float]: """ Gets a dictionary expressing fitness in a synthetic way from the list of boolean values saying if a trace in the log is fit, and the float values of fitness associated to each trace Parameters ------------ aligned_traces Result of the token-based replayer parameters Possible parameters of the evaluation Returns ----------- dictionary Containing two keys (percFitTraces and averageFitness) """ if parameters is None: parameters = {} no_traces = len(aligned_traces) fit_traces = len([x for x in aligned_traces if x["trace_is_fit"]]) sum_of_fitness = sum([x["trace_fitness"] for x in aligned_traces]) perc_fit_traces = 0.0 average_fitness = 0.0 log_fitness = 0 total_m = sum([x["missing_tokens"] for x in aligned_traces]) total_c = sum([x["consumed_tokens"] for x in aligned_traces]) total_r = sum([x["remaining_tokens"] for x in aligned_traces]) total_p = sum([x["produced_tokens"] for x in aligned_traces]) if no_traces > 0 and total_c > 0 and total_p > 0: perc_fit_traces = float(100.0 * fit_traces) / float(no_traces) average_fitness = float(sum_of_fitness) / float(no_traces) log_fitness = 0.5 * (1 - total_m / total_c) + 0.5 * ( 1 - total_r / total_p ) return { "perc_fit_traces": perc_fit_traces, "average_trace_fitness": average_fitness, "log_fitness": log_fitness, "percentage_of_fitting_traces": perc_fit_traces, }
[docs] def apply( log: EventLog, petri_net: PetriNet, initial_marking: Marking, final_marking: Marking, parameters: Optional[Dict[Union[str, Parameters], Any]] = None, ) -> Dict[str, float]: """ Apply token replay fitness evaluation Parameters ----------- log Trace log petri_net Petri net initial_marking Initial marking final_marking Final marking parameters Parameters Returns ----------- dictionary Containing two keys (percFitTraces and averageFitness) """ if parameters is None: parameters = {} activity_key = exec_utils.get_param_value( Parameters.ACTIVITY_KEY, parameters, DEFAULT_NAME_KEY ) token_replay_variant = exec_utils.get_param_value( Parameters.TOKEN_REPLAY_VARIANT, parameters, executor.Variants.TOKEN_REPLAY, ) cleaning_token_flood = exec_utils.get_param_value( Parameters.CLEANING_TOKEN_FLOOD, parameters, False ) show_progress_bar = exec_utils.get_param_value( Parameters.SHOW_PROGRESS_BAR, parameters, constants.SHOW_PROGRESS_BAR ) case_id_key = exec_utils.get_param_value( Parameters.CASE_ID_KEY, parameters, constants.CASE_CONCEPT_NAME ) parameters_tr = { token_replay.Parameters.ACTIVITY_KEY: activity_key, token_replay.Parameters.CONSIDER_REMAINING_IN_FITNESS: True, token_replay.Parameters.CLEANING_TOKEN_FLOOD: cleaning_token_flood, token_replay.Parameters.SHOW_PROGRESS_BAR: show_progress_bar, token_replay.Parameters.CASE_ID_KEY: case_id_key, } aligned_traces = executor.apply( log, petri_net, initial_marking, final_marking, variant=token_replay_variant, parameters=parameters_tr, ) return evaluate(aligned_traces)