Source code for pm4py.algo.organizational_mining.roles.variants.pandas
'''
PM4Py – A Process Mining Library for Python
Copyright (C) 2024 Process Intelligence Solutions UG (haftungsbeschränkt)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as
published by the Free Software Foundation, either version 3 of the
License, or any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public License
along with this program. If not, see this software project's root or
visit <https://www.gnu.org/licenses/>.
Website: https://processintelligence.solutions
Contact: info@processintelligence.solutions
'''
from pm4py.algo.organizational_mining.roles.common import algorithm
from pm4py.util import xes_constants as xes
from collections import Counter
from pm4py.util import exec_utils
from enum import Enum
from pm4py.util import constants
from typing import Optional, Dict, Any, Union, List
import pandas as pd
from pm4py.objects.org.roles.obj import Role
[docs]
class Parameters(Enum):
ROLES_THRESHOLD_PARAMETER = "roles_threshold_parameter"
RESOURCE_KEY = constants.PARAMETER_CONSTANT_RESOURCE_KEY
ACTIVITY_KEY = constants.PARAMETER_CONSTANT_ACTIVITY_KEY
[docs]
def apply(
df: pd.DataFrame,
parameters: Optional[Dict[Union[str, Parameters], Any]] = None,
) -> List[Role]:
"""
Gets the roles (group of different activities done by similar resources)
out of the log
Parameters
-------------
df
Pandas dataframe
parameters
Possible parameters of the algorithm
Returns
------------
roles
List of different roles inside the log
"""
if parameters is None:
parameters = {}
resource_key = exec_utils.get_param_value(
Parameters.RESOURCE_KEY, parameters, xes.DEFAULT_RESOURCE_KEY
)
activity_key = exec_utils.get_param_value(
Parameters.ACTIVITY_KEY, parameters, xes.DEFAULT_NAME_KEY
)
activity_resource_couples = Counter(
df.groupby([resource_key, activity_key]).size().to_dict()
)
return algorithm.apply(activity_resource_couples, parameters=parameters)