Source code for pm4py.algo.organizational_mining.roles.variants.pandas

'''
    PM4Py – A Process Mining Library for Python
Copyright (C) 2024 Process Intelligence Solutions UG (haftungsbeschränkt)

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as
published by the Free Software Foundation, either version 3 of the
License, or any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU Affero General Public License for more details.

You should have received a copy of the GNU Affero General Public License
along with this program.  If not, see this software project's root or
visit <https://www.gnu.org/licenses/>.

Website: https://processintelligence.solutions
Contact: info@processintelligence.solutions
'''
from pm4py.algo.organizational_mining.roles.common import algorithm
from pm4py.util import xes_constants as xes
from collections import Counter
from pm4py.util import exec_utils

from enum import Enum
from pm4py.util import constants
from typing import Optional, Dict, Any, Union, List
import pandas as pd
from pm4py.objects.org.roles.obj import Role


[docs] class Parameters(Enum): ROLES_THRESHOLD_PARAMETER = "roles_threshold_parameter" RESOURCE_KEY = constants.PARAMETER_CONSTANT_RESOURCE_KEY ACTIVITY_KEY = constants.PARAMETER_CONSTANT_ACTIVITY_KEY
[docs] def apply( df: pd.DataFrame, parameters: Optional[Dict[Union[str, Parameters], Any]] = None, ) -> List[Role]: """ Gets the roles (group of different activities done by similar resources) out of the log Parameters ------------- df Pandas dataframe parameters Possible parameters of the algorithm Returns ------------ roles List of different roles inside the log """ if parameters is None: parameters = {} resource_key = exec_utils.get_param_value( Parameters.RESOURCE_KEY, parameters, xes.DEFAULT_RESOURCE_KEY ) activity_key = exec_utils.get_param_value( Parameters.ACTIVITY_KEY, parameters, xes.DEFAULT_NAME_KEY ) activity_resource_couples = Counter( df.groupby([resource_key, activity_key]).size().to_dict() ) return algorithm.apply(activity_resource_couples, parameters=parameters)