Source code for pm4py.algo.organizational_mining.sna.variants.log.jointactivities

'''
    PM4Py – A Process Mining Library for Python
Copyright (C) 2024 Process Intelligence Solutions UG (haftungsbeschränkt)

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as
published by the Free Software Foundation, either version 3 of the
License, or any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU Affero General Public License for more details.

You should have received a copy of the GNU Affero General Public License
along with this program.  If not, see this software project's root or
visit <https://www.gnu.org/licenses/>.

Website: https://processintelligence.solutions
Contact: info@processintelligence.solutions
'''
from collections import Counter

import numpy as np

from pm4py.objects.conversion.log import converter as log_converter
from pm4py.util import xes_constants as xes
from pm4py.util import exec_utils
from enum import Enum
from pm4py.util import constants

from typing import Optional, Dict, Any, Union
from pm4py.objects.log.obj import EventLog
from pm4py.objects.org.sna.obj import SNA


[docs] class Parameters(Enum): ACTIVITY_KEY = constants.PARAMETER_CONSTANT_ACTIVITY_KEY RESOURCE_KEY = constants.PARAMETER_CONSTANT_RESOURCE_KEY METRIC_NORMALIZATION = "metric_normalization"
[docs] def apply( log: EventLog, parameters: Optional[Dict[Union[str, Parameters], Any]] = None, ) -> SNA: """ Calculates the Joint Activities / Similar Task metric Parameters ------------ log Log parameters Possible parameters of the algorithm Returns ----------- tuple Tuple containing the metric matrix and the resources list. Moreover, last boolean indicates that the metric is directed. """ from scipy.stats import pearsonr if parameters is None: parameters = {} resource_key = exec_utils.get_param_value( Parameters.RESOURCE_KEY, parameters, xes.DEFAULT_RESOURCE_KEY ) activity_key = exec_utils.get_param_value( Parameters.ACTIVITY_KEY, parameters, xes.DEFAULT_NAME_KEY ) stream = log_converter.apply( log, variant=log_converter.TO_EVENT_STREAM, parameters={"deepcopy": False, "include_case_attributes": False}, ) activities = Counter(event[activity_key] for event in stream) resources = Counter(event[resource_key] for event in stream) activity_resource_couples = Counter( (event[resource_key], event[activity_key]) for event in stream ) activities_keys = sorted(list(activities.keys())) resources_keys = sorted(list(resources.keys())) rsc_act_matrix = np.zeros((len(resources_keys), len(activities_keys))) for arc in activity_resource_couples.keys(): i = resources_keys.index(arc[0]) j = activities_keys.index(arc[1]) rsc_act_matrix[i, j] += activity_resource_couples[arc] connections = {} for i in range(rsc_act_matrix.shape[0]): vect_i = rsc_act_matrix[i, :] for j in range(rsc_act_matrix.shape[0]): if not i == j: vect_j = rsc_act_matrix[j, :] r, p = pearsonr(vect_i, vect_j) connections[(resources_keys[i], resources_keys[j])] = r return SNA(connections, False)