Source code for pm4py.algo.organizational_mining.sna.variants.pandas.handover
'''
PM4Py – A Process Mining Library for Python
Copyright (C) 2024 Process Intelligence Solutions UG (haftungsbeschränkt)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as
published by the Free Software Foundation, either version 3 of the
License, or any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public License
along with this program. If not, see this software project's root or
visit <https://www.gnu.org/licenses/>.
Website: https://processintelligence.solutions
Contact: info@processintelligence.solutions
'''
from pm4py.util import xes_constants as xes
from enum import Enum
from pm4py.util import constants, exec_utils
from pm4py.util import variants_util
from typing import Optional, Dict, Any, Union
from pm4py.objects.org.sna.obj import SNA
import pandas as pd
[docs]
class Parameters(Enum):
ACTIVITY_KEY = constants.PARAMETER_CONSTANT_ACTIVITY_KEY
RESOURCE_KEY = constants.PARAMETER_CONSTANT_RESOURCE_KEY
CASE_ID_KEY = constants.PARAMETER_CONSTANT_CASEID_KEY
BETA = "beta"
BETA = Parameters.BETA
[docs]
def apply(
log: pd.DataFrame,
parameters: Optional[Dict[Union[str, Parameters], Any]] = None,
) -> SNA:
"""
Calculates the HW metric
Parameters
------------
log
Log
parameters
Possible parameters of the algorithm:
Paramters.BETA -> beta value as described in the Wil SNA paper
Returns
-----------
tuple
Tuple containing the metric matrix and the resources list. Moreover, last boolean indicates that the metric is
directed.
"""
if parameters is None:
parameters = {}
import numpy
from pm4py.statistics.traces.generic.pandas import case_statistics
resource_key = exec_utils.get_param_value(
Parameters.RESOURCE_KEY, parameters, xes.DEFAULT_RESOURCE_KEY
)
beta = exec_utils.get_param_value(Parameters.BETA, parameters, 0)
case_id_key = exec_utils.get_param_value(
Parameters.CASE_ID_KEY, parameters, constants.CASE_CONCEPT_NAME
)
parameters_variants = {
case_statistics.Parameters.ACTIVITY_KEY: resource_key,
case_statistics.Parameters.ATTRIBUTE_KEY: resource_key,
case_statistics.Parameters.CASE_ID_KEY: case_id_key,
}
variants_occ = {
x["variant"]: x[case_id_key]
for x in case_statistics.get_variant_statistics(
log, parameters=parameters_variants
)
}
variants_resources = list(variants_occ.keys())
resources = [
variants_util.get_activities_from_variant(y)
for y in variants_resources
]
flat_list = sorted(
list(set([item for sublist in resources for item in sublist]))
)
metric_matrix = numpy.zeros((len(flat_list), len(flat_list)))
sum_i_to_j = {}
dividend = 0
for idx, rv in enumerate(resources):
rvj = variants_resources[idx]
for i in range(len(rv) - 1):
res_i = flat_list.index(rv[i])
if res_i not in sum_i_to_j:
sum_i_to_j[res_i] = {}
for j in range(i + 1, len(rv)):
res_j = flat_list.index(rv[j])
if res_j not in sum_i_to_j[res_i]:
sum_i_to_j[res_i][res_j] = 0
if beta == 0:
sum_i_to_j[res_i][res_j] += variants_occ[rvj]
dividend += variants_occ[rvj]
break
else:
sum_i_to_j[res_i][res_j] += variants_occ[rvj] * (
beta ** (j - i - 1)
)
dividend += variants_occ[rvj] * (beta ** (j - i - 1))
for key1 in sum_i_to_j:
for key2 in sum_i_to_j[key1]:
metric_matrix[key1][key2] = sum_i_to_j[key1][key2] / dividend
connections = {}
for key1 in sum_i_to_j:
for key2 in sum_i_to_j[key1]:
connections[(flat_list[key1], flat_list[key2])] = (
sum_i_to_j[key1][key2] / dividend
)
metric_matrix[key1][key2] = sum_i_to_j[key1][key2] / dividend
return SNA(connections, True)