Source code for pm4py.algo.organizational_mining.sna.variants.pandas.jointactivities

'''
    PM4Py – A Process Mining Library for Python
Copyright (C) 2024 Process Intelligence Solutions UG (haftungsbeschränkt)

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as
published by the Free Software Foundation, either version 3 of the
License, or any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU Affero General Public License for more details.

You should have received a copy of the GNU Affero General Public License
along with this program.  If not, see this software project's root or
visit <https://www.gnu.org/licenses/>.

Website: https://processintelligence.solutions
Contact: info@processintelligence.solutions
'''
from pm4py.util import xes_constants as xes
from pm4py.util import exec_utils
from enum import Enum
from pm4py.util import constants

from typing import Optional, Dict, Any, Union
import pandas as pd
from pm4py.objects.org.sna.obj import SNA


[docs] class Parameters(Enum): ACTIVITY_KEY = constants.PARAMETER_CONSTANT_ACTIVITY_KEY RESOURCE_KEY = constants.PARAMETER_CONSTANT_RESOURCE_KEY METRIC_NORMALIZATION = "metric_normalization"
[docs] def apply( log: pd.DataFrame, parameters: Optional[Dict[Union[str, Parameters], Any]] = None, ) -> SNA: """ Calculates the Joint Activities / Similar Task metric Parameters ------------ log Log parameters Possible parameters of the algorithm Returns ----------- tuple Tuple containing the metric matrix and the resources list. Moreover, last boolean indicates that the metric is directed. """ import numpy as np from scipy.stats import pearsonr if parameters is None: parameters = {} resource_key = exec_utils.get_param_value( Parameters.RESOURCE_KEY, parameters, xes.DEFAULT_RESOURCE_KEY ) activity_key = exec_utils.get_param_value( Parameters.ACTIVITY_KEY, parameters, xes.DEFAULT_NAME_KEY ) activities = log[activity_key].value_counts().to_dict() resources = log[resource_key].value_counts().to_dict() activity_resource_couples = ( log.groupby([resource_key, activity_key]).size().to_dict() ) activities_keys = sorted(list(activities.keys())) resources_keys = sorted(list(resources.keys())) rsc_act_matrix = np.zeros((len(resources_keys), len(activities_keys))) for arc in activity_resource_couples.keys(): i = resources_keys.index(arc[0]) j = activities_keys.index(arc[1]) rsc_act_matrix[i, j] += activity_resource_couples[arc] connections = {} for i in range(rsc_act_matrix.shape[0]): vect_i = rsc_act_matrix[i, :] for j in range(rsc_act_matrix.shape[0]): if not i == j: vect_j = rsc_act_matrix[j, :] r, p = pearsonr(vect_i, vect_j) connections[(resources_keys[i], resources_keys[j])] = r return SNA(connections, False)