Source code for pm4py.algo.querying.llm.abstractions.stream_to_descr

'''
    PM4Py – A Process Mining Library for Python
Copyright (C) 2024 Process Intelligence Solutions UG (haftungsbeschränkt)

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as
published by the Free Software Foundation, either version 3 of the
License, or any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU Affero General Public License for more details.

You should have received a copy of the GNU Affero General Public License
along with this program.  If not, see this software project's root or
visit <https://www.gnu.org/licenses/>.

Website: https://processintelligence.solutions
Contact: info@processintelligence.solutions
'''

from typing import Optional, Dict, Any, Union
from pm4py.objects.log.obj import EventLog, EventStream
from enum import Enum
from pm4py.util import exec_utils, constants, xes_constants
from pm4py.objects.conversion.log import converter as log_converter

import pandas as pd


[docs] class Parameters(Enum): RESPONSE_HEADER = "response_header" TIMESTAMP_KEY = constants.PARAMETER_CONSTANT_TIMESTAMP_KEY MAX_LEN = "max_len"
[docs] def apply( log_obj: Union[EventLog, EventStream, pd.DataFrame], parameters: Optional[Dict[Any, Any]] = None, ) -> str: """ Given a log object, returns a representation of the (last) events of a stream corresponding to the log object. Parameters -------------- log_obj Log object parameters Parameters of the algorithm, including: - Parameters.RESPONSE_HEADER => includes the header in the response - Parameters.TIMESTAMP_KEY => the attribute to be used as timestamp - Parameters.MAX_LEN => maximum length of the resulting stream Returns -------------- descr String representing the stream of events """ if parameters is None: parameters = {} parameters["stream_postprocessing"] = True event_stream = log_converter.apply( log_obj, variant=log_converter.Variants.TO_EVENT_STREAM, parameters=parameters, )._list timestamp_key = exec_utils.get_param_value( Parameters.TIMESTAMP_KEY, parameters, xes_constants.DEFAULT_TIMESTAMP_KEY, ) response_header = exec_utils.get_param_value( Parameters.RESPONSE_HEADER, parameters, True ) max_len = exec_utils.get_param_value( Parameters.MAX_LEN, parameters, constants.OPENAI_MAX_LEN ) event_stream.sort(key=lambda x: x[timestamp_key], reverse=True) ret = ["\n"] interet = [] summ = 2 if response_header: header = "If I have the following stream of events:\n" summ += len(header) + 1 ret.append(header) for ev in event_stream: if summ > max_len: break stru = str(ev) summ += len(stru) + 1 interet.append(stru) interet.reverse() ret = ret + interet + ["\n"] return "\n".join(ret)