Source code for pm4py.algo.querying.llm.connectors.google
'''
PM4Py – A Process Mining Library for Python
Copyright (C) 2024 Process Intelligence Solutions UG (haftungsbeschränkt)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as
published by the Free Software Foundation, either version 3 of the
License, or any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public License
along with this program. If not, see this software project's root or
visit <https://www.gnu.org/licenses/>.
Website: https://processintelligence.solutions
Contact: info@processintelligence.solutions
'''
from enum import Enum
from pm4py.util import exec_utils
from typing import Optional, Dict, Any
import base64
import os
from pm4py.util import constants
[docs]
class Parameters(Enum):
API_KEY = "api_key"
GOOGLE_MODEL = "google_model"
IMAGE_PATH = "image_path"
[docs]
def encode_image(image_path):
with open(image_path, "rb") as image_file:
return base64.b64encode(image_file.read()).decode("utf-8")
[docs]
def apply(prompt: str, parameters: Optional[Dict[Any, Any]] = None) -> str:
import requests
if parameters is None:
parameters = {}
image_path = exec_utils.get_param_value(
Parameters.IMAGE_PATH, parameters, None
)
api_key = exec_utils.get_param_value(
Parameters.API_KEY, parameters, constants.GOOGLE_API_KEY
)
model = exec_utils.get_param_value(
Parameters.GOOGLE_MODEL, parameters, constants.GOOGLE_DEFAULT_MODEL
)
headers = {
"Content-Type": "application/json",
}
payload = {"contents": [{"parts": [{"text": prompt}]}]}
if image_path is not None:
image_format = os.path.splitext(image_path)[1][1:].lower()
base64_image = encode_image(image_path)
spec = {
"inline_data": {
"mime_type": "image/" + image_format,
"data": base64_image,
}
}
payload["contents"][0]["parts"].append(spec)
url = (
"https://generativelanguage.googleapis.com/v1beta/models/"
+ model
+ ":generateContent?key="
+ api_key
)
response = requests.post(url, headers=headers, json=payload).json()
if "error" in response:
# raise an exception when the request fails, with the provided message
raise Exception(response["error"]["message"])
return response["candidates"][0]["content"]["parts"][0]["text"]