Source code for pm4py.algo.simulation.montecarlo.utils.replay

'''
    PM4Py – A Process Mining Library for Python
Copyright (C) 2024 Process Intelligence Solutions UG (haftungsbeschränkt)

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as
published by the Free Software Foundation, either version 3 of the
License, or any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU Affero General Public License for more details.

You should have received a copy of the GNU Affero General Public License
along with this program.  If not, see this software project's root or
visit <https://www.gnu.org/licenses/>.

Website: https://processintelligence.solutions
Contact: info@processintelligence.solutions
'''
from pm4py.algo.conformance.tokenreplay.variants import token_replay
from pm4py.statistics.variants.log import get as variants_module
from pm4py.objects.petri_net.obj import PetriNet
from pm4py.objects.random_variables.random_variable import RandomVariable
from pm4py.objects.petri_net.utils import performance_map
from pm4py.util import exec_utils, xes_constants
from pm4py.algo.conformance.tokenreplay import algorithm as executor

from enum import Enum
from pm4py.util import constants
from copy import copy


[docs] class Parameters(Enum): ACTIVITY_KEY = constants.PARAMETER_CONSTANT_ACTIVITY_KEY TIMESTAMP_KEY = constants.PARAMETER_CONSTANT_TIMESTAMP_KEY TOKEN_REPLAY_VARIANT = "token_replay_variant" PARAM_NUM_SIMULATIONS = "num_simulations" PARAM_FORCE_DISTRIBUTION = "force_distribution" PARAM_ENABLE_DIAGNOSTICS = "enable_diagnostics" PARAM_DIAGN_INTERVAL = "diagn_interval" PARAM_CASE_ARRIVAL_RATIO = "case_arrival_ratio" PARAM_PROVIDED_SMAP = "provided_stochastic_map" PARAM_MAP_RESOURCES_PER_PLACE = "map_resources_per_place" PARAM_DEFAULT_NUM_RESOURCES_PER_PLACE = "default_num_resources_per_place" PARAM_SMALL_SCALE_FACTOR = "small_scale_factor" PARAM_MAX_THREAD_EXECUTION_TIME = "max_thread_exec_time"
[docs] def get_map_from_log_and_net( log, net, initial_marking, final_marking, force_distribution=None, parameters=None, ): """ Get transition stochastic distribution map given the log and the Petri net Parameters ----------- log Event log net Petri net initial_marking Initial marking of the Petri net final_marking Final marking of the Petri net force_distribution If provided, distribution to force usage (e.g. EXPONENTIAL) parameters Parameters of the algorithm, including: Parameters.ACTIVITY_KEY -> activity name Parameters.TIMESTAMP_KEY -> timestamp key Returns ----------- stochastic_map Map that to each transition associates a random variable """ stochastic_map = {} if parameters is None: parameters = {} token_replay_variant = exec_utils.get_param_value( Parameters.TOKEN_REPLAY_VARIANT, parameters, executor.Variants.TOKEN_REPLAY, ) activity_key = exec_utils.get_param_value( Parameters.ACTIVITY_KEY, parameters, xes_constants.DEFAULT_NAME_KEY ) timestamp_key = exec_utils.get_param_value( Parameters.TIMESTAMP_KEY, parameters, xes_constants.DEFAULT_TIMESTAMP_KEY, ) parameters_variants = { constants.PARAMETER_CONSTANT_ACTIVITY_KEY: activity_key } variants_idx = variants_module.get_variants_from_log_trace_idx( log, parameters=parameters_variants ) variants = variants_module.convert_variants_trace_idx_to_trace_obj( log, variants_idx ) parameters_tr = copy(parameters) parameters_tr[token_replay.Parameters.ACTIVITY_KEY] = activity_key parameters_tr[token_replay.Parameters.VARIANTS] = variants parameters_ses = copy(parameters) # do the replay aligned_traces = executor.apply( log, net, initial_marking, final_marking, variant=token_replay_variant, parameters=parameters_tr, ) element_statistics = performance_map.single_element_statistics( log, net, initial_marking, aligned_traces, variants_idx, activity_key=activity_key, timestamp_key=timestamp_key, parameters=parameters_ses, ) for el in element_statistics: if ( type(el) is PetriNet.Transition and "performance" in element_statistics[el] ): values = element_statistics[el]["performance"] rand = RandomVariable() rand.calculate_parameters( values, force_distribution=force_distribution ) no_of_times_enabled = element_statistics[el]["no_of_times_enabled"] no_of_times_activated = element_statistics[el][ "no_of_times_activated" ] if no_of_times_enabled > 0: rand.set_weight( float(no_of_times_activated) / float(no_of_times_enabled) ) else: rand.set_weight(0.0) stochastic_map[el] = rand return stochastic_map