Source code for pm4py.algo.transformation.ocel.description.variants.variant1
'''
PM4Py – A Process Mining Library for Python
Copyright (C) 2024 Process Intelligence Solutions UG (haftungsbeschränkt)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as
published by the Free Software Foundation, either version 3 of the
License, or any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public License
along with this program. If not, see this software project's root or
visit <https://www.gnu.org/licenses/>.
Website: https://processintelligence.solutions
Contact: info@processintelligence.solutions
'''
from pm4py.objects.ocel.obj import OCEL
from enum import Enum
from pm4py.util import exec_utils
from typing import Optional, Dict, Any
[docs]
class Parameters(Enum):
INCLUDE_TIMESTAMPS = "include_timestamps"
[docs]
def apply(ocel: OCEL, parameters: Optional[Dict[Any, Any]] = None) -> str:
"""
Provides a textual description of the provided object-centric event log
Parameters
--------------
ocel
Object-centric event log
parameters
Possible parameters of the algorithm, including:
- Parameters.INCLUDE_TIMESTAMPS => include the timestamps (or not) in the representation
Returns
-------------
ocel_stri
Textual representation of the object-centric event log
"""
if parameters is None:
parameters = {}
include_timestamps = exec_utils.get_param_value(
Parameters.INCLUDE_TIMESTAMPS, parameters, True
)
object_ots = ocel.objects[
[ocel.object_id_column, ocel.object_type_column]
].to_dict("records")
object_ots = {
x[ocel.object_id_column]: x[ocel.object_type_column]
for x in object_ots
}
events = ocel.events.sort_values(
[ocel.event_timestamp, ocel.event_activity, ocel.event_id_column]
).to_dict("records")
objects = ocel.objects.sort_values(ocel.object_id_column).to_dict(
"records"
)
relations = ocel.relations.sort_values(
[
ocel.event_timestamp,
ocel.event_activity,
ocel.object_id_column,
ocel.event_id_column,
]
)
tdf = relations.groupby(ocel.object_id_column)[ocel.event_timestamp]
objects_start = tdf.first().to_dict()
objects_end = tdf.last().to_dict()
objects_lifecycle = {
x: objects_end[x].timestamp() - objects_start[x].timestamp()
for x in objects_start
}
relations = (
relations.groupby(ocel.event_id_column)[ocel.object_id_column]
.agg(list)
.to_dict()
)
ret = ["\n\nevents:\n"]
for ev in events:
stru = (
ev[ocel.event_activity]
+ " ( related objects: "
+ ", ".join(relations[ev[ocel.event_id_column]])
+ " ) "
)
if include_timestamps:
stru = stru + " timestamp: " + str(ev[ocel.event_timestamp])
ret.append(stru)
ret.append("\nobjects:\n")
for obj in objects:
obj_id = obj[ocel.object_id_column]
stru = obj_id + " object type: " + object_ots[obj_id]
if include_timestamps:
stru = (
stru
+ " ( lifecycle start: "
+ str(objects_start[obj_id])
+ " ; lifecycle end: "
+ str(objects_end[obj_id])
+ " ; lifecycle duration: "
+ str(objects_lifecycle[obj_id])
+ " )"
)
ret.append(stru)
ret = "\n".join(ret)
return ret