Source code for pm4py.algo.transformation.ocel.description.variants.variant1

'''
    PM4Py – A Process Mining Library for Python
Copyright (C) 2024 Process Intelligence Solutions UG (haftungsbeschränkt)

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as
published by the Free Software Foundation, either version 3 of the
License, or any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU Affero General Public License for more details.

You should have received a copy of the GNU Affero General Public License
along with this program.  If not, see this software project's root or
visit <https://www.gnu.org/licenses/>.

Website: https://processintelligence.solutions
Contact: info@processintelligence.solutions
'''

from pm4py.objects.ocel.obj import OCEL
from enum import Enum
from pm4py.util import exec_utils
from typing import Optional, Dict, Any


[docs] class Parameters(Enum): INCLUDE_TIMESTAMPS = "include_timestamps"
[docs] def apply(ocel: OCEL, parameters: Optional[Dict[Any, Any]] = None) -> str: """ Provides a textual description of the provided object-centric event log Parameters -------------- ocel Object-centric event log parameters Possible parameters of the algorithm, including: - Parameters.INCLUDE_TIMESTAMPS => include the timestamps (or not) in the representation Returns ------------- ocel_stri Textual representation of the object-centric event log """ if parameters is None: parameters = {} include_timestamps = exec_utils.get_param_value( Parameters.INCLUDE_TIMESTAMPS, parameters, True ) object_ots = ocel.objects[ [ocel.object_id_column, ocel.object_type_column] ].to_dict("records") object_ots = { x[ocel.object_id_column]: x[ocel.object_type_column] for x in object_ots } events = ocel.events.sort_values( [ocel.event_timestamp, ocel.event_activity, ocel.event_id_column] ).to_dict("records") objects = ocel.objects.sort_values(ocel.object_id_column).to_dict( "records" ) relations = ocel.relations.sort_values( [ ocel.event_timestamp, ocel.event_activity, ocel.object_id_column, ocel.event_id_column, ] ) tdf = relations.groupby(ocel.object_id_column)[ocel.event_timestamp] objects_start = tdf.first().to_dict() objects_end = tdf.last().to_dict() objects_lifecycle = { x: objects_end[x].timestamp() - objects_start[x].timestamp() for x in objects_start } relations = ( relations.groupby(ocel.event_id_column)[ocel.object_id_column] .agg(list) .to_dict() ) ret = ["\n\nevents:\n"] for ev in events: stru = ( ev[ocel.event_activity] + " ( related objects: " + ", ".join(relations[ev[ocel.event_id_column]]) + " ) " ) if include_timestamps: stru = stru + " timestamp: " + str(ev[ocel.event_timestamp]) ret.append(stru) ret.append("\nobjects:\n") for obj in objects: obj_id = obj[ocel.object_id_column] stru = obj_id + " object type: " + object_ots[obj_id] if include_timestamps: stru = ( stru + " ( lifecycle start: " + str(objects_start[obj_id]) + " ; lifecycle end: " + str(objects_end[obj_id]) + " ; lifecycle duration: " + str(objects_lifecycle[obj_id]) + " )" ) ret.append(stru) ret = "\n".join(ret) return ret