Source code for pm4py.llm

'''
    PM4Py – A Process Mining Library for Python
Copyright (C) 2024 Process Intelligence Solutions UG (haftungsbeschränkt)

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as
published by the Free Software Foundation, either version 3 of the
License, or any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU Affero General Public License for more details.

You should have received a copy of the GNU Affero General Public License
along with this program.  If not, see this software project's root or
visit <https://www.gnu.org/licenses/>.

Website: https://processintelligence.solutions
Contact: info@processintelligence.solutions
'''

import pandas as pd
from pm4py.objects.log.obj import EventLog, EventStream, Trace
from typing import Union, Optional, Dict, Tuple, List, Any
from pm4py.utils import get_properties, constants, check_is_pandas_dataframe
from pm4py.utils import __event_log_deprecation_warning
from pm4py.objects.ocel.obj import OCEL
from tempfile import NamedTemporaryFile
from copy import copy
from pm4py.objects.petri_net.obj import PetriNet, Marking


[docs] def openai_query( prompt: str, api_key: Optional[str] = None, openai_model: Optional[str] = None, api_url: Optional[str] = None, **kwargs ) -> str: """ Executes the provided prompt, obtaining the answer from the OpenAI APIs. :param prompt: The prompt to be executed. :param api_key: (Optional) OpenAI API key. :param openai_model: (Optional) OpenAI model to be used (default: "gpt-3.5-turbo"). :param api_url: (Optional) OpenAI API URL. :param **kwargs: Additional parameters to pass to the OpenAI API. :return: The response from the OpenAI API as a string. .. code-block:: python3 import pm4py resp = pm4py.llm.openai_query('What is the result of 3+3?', api_key="sk-382393", openai_model="gpt-3.5-turbo") print(resp) """ parameters = copy(kwargs) if kwargs is not None else {} if api_url is not None: parameters["api_url"] = api_url if api_key is not None: parameters["api_key"] = api_key if openai_model is not None: parameters["openai_model"] = openai_model from pm4py.algo.querying.llm.connectors import openai as perform_query return perform_query.apply(prompt, parameters=parameters)
[docs] def google_query( prompt: str, api_key: Optional[str] = None, model: Optional[str] = None, **kwargs ) -> str: """ Executes the provided prompt, obtaining the answer from the Google APIs. :param prompt: prompt that should be executed :param api_key: API key :param model: Model to be used (default: gemini-1.5-flash-002) :rtype: ``str`` .. code-block:: python3 import pm4py resp = pm4py.llm.google_query('what is the result of 3+3?', api_key="sk-382393", model="gemini-1.5-flash-002") print(resp) """ parameters = copy(kwargs) if kwargs is not None else {} if api_key is not None: parameters["api_key"] = api_key if model is not None: parameters["google_model"] = model from pm4py.algo.querying.llm.connectors import google as perform_query return perform_query.apply(prompt, parameters=parameters)
[docs] def anthropic_query( prompt: str, api_key: Optional[str] = None, model: Optional[str] = None, **kwargs ) -> str: """ Executes the provided prompt, obtaining the answer from the Google APIs. :param prompt: prompt that should be executed :param api_key: API key :param model: Model to be used (default: claude-3-5-sonnet-20241022) :rtype: ``str`` .. code-block:: python3 import pm4py resp = pm4py.llm.anthropic_query('what is the result of 3+3?', api_key="sk-382393", model="claude-3-5-sonnet-20241022") print(resp) """ parameters = copy(kwargs) if kwargs is not None else {} if api_key is not None: parameters["api_key"] = api_key if model is not None: parameters["anthropic_model"] = model from pm4py.algo.querying.llm.connectors import anthropic as perform_query return perform_query.apply(prompt, parameters=parameters)
[docs] def abstract_dfg( log_obj: Union[pd.DataFrame, EventLog, EventStream], max_len: int = constants.OPENAI_MAX_LEN, include_performance: bool = True, relative_frequency: bool = False, response_header: bool = True, primary_performance_aggregation: str = "mean", secondary_performance_aggregation: Optional[str] = None, activity_key: str = "concept:name", timestamp_key: str = "time:timestamp", case_id_key: str = "case:concept:name", ) -> str: """ Obtains the DFG (Directly-Follows Graph) abstraction of a traditional event log. :param log_obj: The log object to abstract. :param max_len: Maximum length of the string abstraction (default: constants.OPENAI_MAX_LEN). :param include_performance: Whether to include the performance of the paths in the abstraction. :param relative_frequency: Whether to use relative instead of absolute frequency of the paths. :param response_header: Whether to include a short header before the paths, describing the abstraction. :param primary_performance_aggregation: Primary aggregation method for the arc's performance (default: "mean"). Other options: "median", "min", "max", "sum", "stdev". :param secondary_performance_aggregation: (Optional) Secondary aggregation method for the arc's performance (default: None). Other options: "mean", "median", "min", "max", "sum", "stdev". :param activity_key: The column name to be used as activity. :param timestamp_key: The column name to be used as timestamp. :param case_id_key: The column name to be used as case identifier. :return: The DFG abstraction as a string. .. code-block:: python3 import pm4py log = pm4py.read_xes("tests/input_data/roadtraffic100traces.xes") print(pm4py.llm.abstract_dfg(log)) """ __event_log_deprecation_warning(log_obj) parameters = get_properties( log_obj, activity_key=activity_key, timestamp_key=timestamp_key, case_id_key=case_id_key, ) parameters["max_len"] = max_len parameters["include_performance"] = include_performance parameters["relative_frequency"] = relative_frequency parameters["response_header"] = response_header parameters["primary_performance_aggregation"] = ( primary_performance_aggregation ) parameters["secondary_performance_aggregation"] = ( secondary_performance_aggregation ) from pm4py.algo.querying.llm.abstractions import log_to_dfg_descr return log_to_dfg_descr.apply(log_obj, parameters=parameters)
[docs] def abstract_variants( log_obj: Union[pd.DataFrame, EventLog, EventStream], max_len: int = constants.OPENAI_MAX_LEN, include_performance: bool = True, relative_frequency: bool = False, response_header: bool = True, primary_performance_aggregation: str = "mean", secondary_performance_aggregation: Optional[str] = None, activity_key: str = "concept:name", timestamp_key: str = "time:timestamp", case_id_key: str = "case:concept:name", ) -> str: """ Obtains the variants abstraction of a traditional event log. :param log_obj: The log object to abstract. :param max_len: Maximum length of the string abstraction (default: constants.OPENAI_MAX_LEN). :param include_performance: Whether to include the performance of the variants in the abstraction. :param relative_frequency: Whether to use relative instead of absolute frequency of the variants. :param response_header: Whether to include a short header before the variants, describing the abstraction. :param primary_performance_aggregation: Primary aggregation method for the variants' performance (default: "mean"). Other options: "median", "min", "max", "sum", "stdev". :param secondary_performance_aggregation: (Optional) Secondary aggregation method for the variants' performance (default: None). Other options: "mean", "median", "min", "max", "sum", "stdev". :param activity_key: The column name to be used as activity. :param timestamp_key: The column name to be used as timestamp. :param case_id_key: The column name to be used as case identifier. :return: The variants abstraction as a string. .. code-block:: python3 import pm4py log = pm4py.read_xes("tests/input_data/roadtraffic100traces.xes") print(pm4py.llm.abstract_variants(log)) """ __event_log_deprecation_warning(log_obj) parameters = get_properties( log_obj, activity_key=activity_key, timestamp_key=timestamp_key, case_id_key=case_id_key, ) parameters["max_len"] = max_len parameters["include_performance"] = include_performance parameters["relative_frequency"] = relative_frequency parameters["response_header"] = response_header parameters["primary_performance_aggregation"] = ( primary_performance_aggregation ) parameters["secondary_performance_aggregation"] = ( secondary_performance_aggregation ) from pm4py.algo.querying.llm.abstractions import log_to_variants_descr return log_to_variants_descr.apply(log_obj, parameters=parameters)
[docs] def abstract_ocel(ocel: OCEL, include_timestamps: bool = True) -> str: """ Obtains the abstraction of an object-centric event log, including the list of events and the objects of the OCEL. :param ocel: The object-centric event log to abstract. :param include_timestamps: Whether to include timestamp information in the abstraction. :return: The OCEL abstraction as a string. .. code-block:: python3 import pm4py ocel = pm4py.read_ocel("tests/input_data/ocel/example_log.jsonocel") print(pm4py.llm.abstract_ocel(ocel)) """ parameters = {} parameters["include_timestamps"] = include_timestamps from pm4py.algo.transformation.ocel.description import ( algorithm as ocel_description, ) return ocel_description.apply(ocel, parameters=parameters)
[docs] def abstract_ocel_ocdfg( ocel: OCEL, include_header: bool = True, include_timestamps: bool = True, max_len: int = constants.OPENAI_MAX_LEN, ) -> str: """ Obtains the abstraction of an object-centric event log, representing the object-centric directly-follows graph in text. :param ocel: The object-centric event log to abstract. :param include_header: Whether to include a header in the abstraction. :param include_timestamps: Whether to include timestamp information in the abstraction. :param max_len: Maximum length of the abstraction (default: constants.OPENAI_MAX_LEN). :return: The object-centric DFG abstraction as a string. .. code-block:: python3 import pm4py ocel = pm4py.read_ocel("tests/input_data/ocel/example_log.jsonocel") print(pm4py.llm.abstract_ocel_ocdfg(ocel)) """ parameters = {} parameters["include_header"] = include_header parameters["include_timestamps"] = include_timestamps parameters["max_len"] = max_len from pm4py.algo.querying.llm.abstractions import ocel_ocdfg_descr return ocel_ocdfg_descr.apply(ocel, parameters=parameters)
[docs] def abstract_ocel_features( ocel: OCEL, obj_type: str, include_header: bool = True, max_len: int = constants.OPENAI_MAX_LEN, debug: bool = False, enable_object_lifecycle_paths: bool = True, ) -> str: """ Obtains the abstraction of an object-centric event log, representing the features and their values in text. :param ocel: The object-centric event log to abstract. :param obj_type: The object type to consider in feature extraction. :param include_header: Whether to include a header in the abstraction. :param max_len: Maximum length of the abstraction (default: constants.OPENAI_MAX_LEN). :param debug: Enables debugging mode, providing insights into feature extraction steps. :param enable_object_lifecycle_paths: Enables the "lifecycle paths" feature in the abstraction. :return: The OCEL features abstraction as a string. .. code-block:: python3 import pm4py ocel = pm4py.read_ocel("tests/input_data/ocel/example_log.jsonocel") print(pm4py.llm.abstract_ocel_features(ocel, obj_type="Resource")) """ parameters = {} parameters["include_header"] = include_header parameters["max_len"] = max_len parameters["debug"] = debug parameters["enable_object_lifecycle_paths"] = enable_object_lifecycle_paths from pm4py.algo.querying.llm.abstractions import ocel_fea_descr return ocel_fea_descr.apply(ocel, obj_type, parameters=parameters)
[docs] def abstract_event_stream( log_obj: Union[pd.DataFrame, EventLog, EventStream], max_len: int = constants.OPENAI_MAX_LEN, response_header: bool = True, activity_key: str = "concept:name", timestamp_key: str = "time:timestamp", case_id_key: str = "case:concept:name", ) -> str: """ Obtains the event stream abstraction of a traditional event log. :param log_obj: The log object to abstract. :param max_len: Maximum length of the string abstraction (default: constants.OPENAI_MAX_LEN). :param response_header: Whether to include a short header before the event stream, describing the abstraction. :param activity_key: The column name to be used as activity. :param timestamp_key: The column name to be used as timestamp. :param case_id_key: The column name to be used as case identifier. :return: The event stream abstraction as a string. .. code-block:: python3 import pm4py log = pm4py.read_xes("tests/input_data/roadtraffic100traces.xes") print(pm4py.llm.abstract_event_stream(log)) """ __event_log_deprecation_warning(log_obj) parameters = get_properties( log_obj, activity_key=activity_key, timestamp_key=timestamp_key, case_id_key=case_id_key, ) parameters["max_len"] = max_len parameters["response_header"] = response_header from pm4py.algo.querying.llm.abstractions import stream_to_descr return stream_to_descr.apply(log_obj, parameters=parameters)
[docs] def abstract_petri_net( net: PetriNet, im: Marking, fm: Marking, response_header: bool = True ) -> str: """ Obtains an abstraction of a Petri net. :param net: The Petri net to abstract. :param im: The initial marking of the Petri net. :param fm: The final marking of the Petri net. :param response_header: Whether to include a header in the abstraction. :return: The Petri net abstraction as a string. .. code-block:: python3 import pm4py net, im, fm = pm4py.read_pnml('tests/input_data/running-example.pnml') print(pm4py.llm.abstract_petri_net(net, im, fm)) """ parameters = {} parameters["response_header"] = response_header from pm4py.algo.querying.llm.abstractions import net_to_descr return net_to_descr.apply(net, im, fm, parameters=parameters)
[docs] def abstract_log_attributes( log_obj: Union[pd.DataFrame, EventLog, EventStream], max_len: int = constants.OPENAI_MAX_LEN, activity_key: str = "concept:name", timestamp_key: str = "time:timestamp", case_id_key: str = "case:concept:name", ) -> str: """ Abstracts the attributes of a log by reporting their names, types, and top values. :param log_obj: The log object whose attributes are to be abstracted. :param max_len: Maximum length of the string abstraction (default: constants.OPENAI_MAX_LEN). :param activity_key: The column name to be used as activity. :param timestamp_key: The column name to be used as timestamp. :param case_id_key: The column name to be used as case identifier. :return: The log attributes abstraction as a string. .. code-block:: python3 import pm4py log = pm4py.read_xes("tests/input_data/roadtraffic100traces.xes") print(pm4py.llm.abstract_log_attributes(log)) """ __event_log_deprecation_warning(log_obj) parameters = get_properties( log_obj, activity_key=activity_key, timestamp_key=timestamp_key, case_id_key=case_id_key, ) parameters["max_len"] = max_len from pm4py.algo.querying.llm.abstractions import log_to_cols_descr return log_to_cols_descr.apply(log_obj, parameters=parameters)
[docs] def abstract_log_features( log_obj: Union[pd.DataFrame, EventLog, EventStream], max_len: int = constants.OPENAI_MAX_LEN, include_header: bool = True, activity_key: str = "concept:name", timestamp_key: str = "time:timestamp", case_id_key: str = "case:concept:name", ) -> str: """ Abstracts the machine learning features obtained from a log by reporting the top features until the desired length is achieved. :param log_obj: The log object from which to extract features. :param max_len: Maximum length of the string abstraction (default: constants.OPENAI_MAX_LEN). :param include_header: Whether to include a header in the abstraction. :param activity_key: The column name to be used as activity. :param timestamp_key: The column name to be used as timestamp. :param case_id_key: The column name to be used as case identifier. :return: The log features abstraction as a string. .. code-block:: python3 import pm4py log = pm4py.read_xes("tests/input_data/roadtraffic100traces.xes") print(pm4py.llm.abstract_log_features(log)) """ __event_log_deprecation_warning(log_obj) parameters = get_properties( log_obj, activity_key=activity_key, timestamp_key=timestamp_key, case_id_key=case_id_key, ) parameters["max_len"] = max_len parameters["include_header"] = include_header from pm4py.algo.querying.llm.abstractions import log_to_fea_descr return log_to_fea_descr.apply(log_obj, parameters=parameters)
[docs] def abstract_temporal_profile( temporal_profile: Dict[Tuple[str, str], Tuple[float, float]], include_header: bool = True, ) -> str: """ Abstracts a temporal profile model into a descriptive string. :param temporal_profile: The temporal profile model to abstract. :param include_header: Whether to include a header in the abstraction describing the temporal profile. :return: The temporal profile abstraction as a string. .. code-block:: python3 import pm4py log = pm4py.read_xes("tests/input_data/roadtraffic100traces.xes", return_legacy_log_object=True) temporal_profile = pm4py.discover_temporal_profile(log) text_abstr = pm4py.llm.abstract_temporal_profile(temporal_profile, include_header=True) print(text_abstr) """ parameters = {} parameters["include_header"] = include_header from pm4py.algo.querying.llm.abstractions import tempprofile_to_descr return tempprofile_to_descr.apply(temporal_profile, parameters=parameters)
[docs] def abstract_case( case: Trace, include_case_attributes: bool = True, include_event_attributes: bool = True, include_timestamp: bool = True, include_header: bool = True, activity_key: str = "concept:name", timestamp_key: str = "time:timestamp", ) -> str: """ Textually abstracts a single case from an event log. :param case: The case object to abstract. :param include_case_attributes: Whether to include attributes at the case level. :param include_event_attributes: Whether to include attributes at the event level. :param include_timestamp: Whether to include event timestamps in the abstraction. :param include_header: Whether to include a header in the abstraction. :param activity_key: The column name to be used as activity. :param timestamp_key: The column name to be used as timestamp. :return: The case abstraction as a string. .. code-block:: python3 import pm4py log = pm4py.read_xes("tests/input_data/roadtraffic100traces.xes", return_legacy_log_object=True) print(pm4py.llm.abstract_case(log[0])) """ parameters = {} parameters["include_case_attributes"] = include_case_attributes parameters["include_event_attributes"] = include_event_attributes parameters["include_timestamp"] = include_timestamp parameters["include_header"] = include_header parameters[constants.PARAMETER_CONSTANT_ACTIVITY_KEY] = activity_key parameters[constants.PARAMETER_CONSTANT_TIMESTAMP_KEY] = timestamp_key from pm4py.algo.querying.llm.abstractions import case_to_descr return case_to_descr.apply(case, parameters=parameters)
[docs] def abstract_declare(declare_model, include_header: bool = True) -> str: """ Textually abstracts a DECLARE model. :param declare_model: The DECLARE model to abstract. :param include_header: Whether to include a header in the abstraction. :return: The DECLARE model abstraction as a string. .. code-block:: python3 import pm4py log = pm4py.read_xes("tests/input_data/roadtraffic100traces.xes", return_legacy_log_object=True) log_ske = pm4py.discover_declare(log) print(pm4py.llm.abstract_declare(log_ske)) """ parameters = {} parameters["include_header"] = include_header from pm4py.algo.querying.llm.abstractions import declare_to_descr return declare_to_descr.apply(declare_model, parameters=parameters)
[docs] def abstract_log_skeleton(log_skeleton, include_header: bool = True) -> str: """ Textually abstracts a log skeleton process model. :param log_skeleton: The log skeleton to abstract. :param include_header: Whether to include a header in the abstraction. :return: The log skeleton abstraction as a string. .. code-block:: python3 import pm4py log = pm4py.read_xes("tests/input_data/roadtraffic100traces.xes", return_legacy_log_object=True) log_ske = pm4py.discover_log_skeleton(log) print(pm4py.llm.abstract_log_skeleton(log_ske)) """ parameters = {} parameters["include_header"] = include_header from pm4py.algo.querying.llm.abstractions import logske_to_descr return logske_to_descr.apply(log_skeleton, parameters=parameters)
def __execute_prompt_to_db_query( log: pd.DataFrame, prompt: str, executor=openai_query, execute_query: bool = True, **kwargs ) -> Union[str, pd.DataFrame]: """ Internal method to retrieve (and execute) a SQL query corresponding to a prompt """ import duckdb if check_is_pandas_dataframe(log): kwargs["table_name"] = "dataframe" dataframe = log response = executor(prompt, **kwargs) sql_query = "" if "```sql" in response: sql_query = response.split("```sql")[1].split("```")[0] sql_query = sql_query.strip() if not sql_query: raise Exception( "The response does not contain a valid SQL query: " + response ) if execute_query: result = duckdb.query(sql_query).to_df() if check_is_pandas_dataframe(log): return result return sql_query
[docs] def nlp_to_log_query( log: pd.DataFrame, query: str, executor=openai_query, obtain_query: bool = True, execute_query: bool = True, **kwargs ) -> Union[str, pd.DataFrame]: """ Translates a natural language statement into a database (SQL) query executable against the event log. :param log: event log object :param query: query expressed in natural language :param executor: the connector to the LLM (e.g., pm4py.llm.openai_query) :param obtain_query: executes the prompt, to transform the natural statements into a database (SQL) query :param execute_query: executes the database (SQL) query against the event data :param kwargs: additional keyword arguments to the method :rtype: ``Union[str, pd.DataFrame]`` .. code-block:: python3 import pm4py log = pm4py.read_xes("tests/input_data/running-example.xes") resp = pm4py.llm.nlp_to_log_query(log, "How many cases are contained in the event log?", api_key="sk-5HNn") print(resp) """ from pm4py.algo.querying.llm.injection import ( algorithm as domain_knowledge_injector, ) prompt = ( "Could you provide a database query for the following question?\n\n" + query ) prompt += domain_knowledge_injector.apply(log, parameters=kwargs) prompt += "\n\nPlease include the SQL query between the ```sql and the ``` tags.\n\n" if obtain_query: return __execute_prompt_to_db_query( log, prompt, executor=executor, execute_query=execute_query, **kwargs ) return prompt
[docs] def nlp_to_log_filter( log: pd.DataFrame, filter_query: str, executor=openai_query, obtain_query: bool = True, execute_query: bool = True, **kwargs ) -> Union[str, pd.DataFrame]: """ Translates a filtering query expressed in natural language into a database (SQL) query that is used to filter the event log. :param log: event log object :param filter_query: filtering query expressed in natural language :param executor: the connector to the LLM (e.g., pm4py.llm.openai_query) :param obtain_query: executes the prompt, to transform the natural statements into a database (SQL) query :param execute_query: executes the database (SQL) query against the event data :param kwargs: additional keyword arguments to the method :rtype: ``Union[str, pd.DataFrame]`` .. code-block:: python3 import pm4py log = pm4py.read_xes("tests/input_data/running-example.xes") resp = pm4py.llm.nlp_to_log_filter(log, "There is an event with activity: pay compensation", api_key="sk-5HNn") print(resp) """ from pm4py.algo.querying.llm.injection import ( algorithm as domain_knowledge_injector, ) prompt = ( "Could you provide a database query to filter all the events of the cases for which at least an event (row) is satisfying the following filtering query?\n\n" + filter_query) prompt += domain_knowledge_injector.apply(log, parameters=kwargs) prompt += "\n\nPlease include the SQL query between the ```sql and the ``` tags.\n\n" if obtain_query: return __execute_prompt_to_db_query( log, prompt, executor=executor, execute_query=execute_query, **kwargs ) return prompt
[docs] def automated_hypotheses_formulation( dataframe: pd.DataFrame, executor=openai_query, obtain_query: bool = True, execute_query: bool = True, max_len=10000, **kwargs ) -> Union[str, List[Tuple[str, str, Union[str, None]]]]: """ Automatically formulate some hypotheses on the event data. The result of this method is either: - The prompt (to be executed manually against the LLM) when obtain_query=False - A list of different hypotheses. Each hypothesis comes with a description (position 0), the SQL query (position 1), and (if execute_query=True) the result of the execution of the query in position 2. :param dataframe: event log object :param executor: the connector to the LLM (e.g., pm4py.llm.openai_query) :param obtain_query: executes the prompt and get the hypotheses along with the corresponding SQL queries :param execute_query: executes the obtained SQL queries and stores the results :param kwargs: additional keyword arguments to the method :param max_len: maximum length of the obtained prompt :rtype: ``Union[str, List[Tuple[str, str, Union[str, None]]]]`` .. code-block:: python3 import pm4py log = pm4py.read_xes("tests/input_data/running-example.xes") result = pm4py.llm.automated_hypotheses_formulation(log, api_key="sk-5HN") print(result) """ import duckdb from pm4py.algo.querying.llm.abstractions import log_to_cols_descr from pm4py.algo.querying.llm.injection import ( algorithm as domain_knowledge_injector, ) prompt = "Could you formulate some hypotheses over the event data? The directly-follows graph, the list of attributes, and additional process mining/database knowledge follow.\n\n" prompt += abstract_dfg(dataframe, max_len=int(max_len / 3)) prompt += "\n\n" prompt += log_to_cols_descr.apply( dataframe, parameters={"max_len": int(max_len / 3)} ) prompt += "\n\n" prompt += domain_knowledge_injector.apply(dataframe, parameters=kwargs) prompt += "Please provide each hypothesis along with a SQL query. Please include the SQL queries between the ```sql and the ``` tags.\n" prompt += "Can you please include also a description of each hypothesis between some <description> and </description> tags?\n\n" if obtain_query: response = executor(prompt, **kwargs) obtained_queries = response.split("```sql") obtained_descriptions = response.split("<description>") if ( len(obtained_queries) > 1 and len(obtained_descriptions) > 1 and len(obtained_queries) == len(obtained_descriptions) ): del obtained_queries[0] del obtained_descriptions[0] obtained_queries = [x.split("```")[0] for x in obtained_queries] obtained_descriptions = [ x.split("</description>")[0].strip() for x in obtained_descriptions ] obtained_results = [None] * len(obtained_descriptions) if execute_query: for i in range(len(obtained_queries)): try: obtained_results[i] = duckdb.sql( obtained_queries[i] ).to_df() except BaseException: print("Exception executing query nr. %d" % i) return [ ( obtained_descriptions[i], obtained_queries[i], obtained_results[i], ) for i in range(len(obtained_queries)) ] return prompt
[docs] def explain_visualization( vis_saver, *args, connector=openai_query, **kwargs ) -> str: """ Explains a process mining visualization using LLMs by saving it as a .png image and providing the image to the Large Language Model along with a description. :param vis_saver: The visualizer function used to save the visualization to disk. :param args: Positional arguments required by the visualizer function. :param connector: (Optional) The connector method to communicate with the large language model (default: openai_query). :param **kwargs: Additional keyword arguments for the visualizer function or the connector (e.g., annotations, API key). :return: The explanation of the visualization as a string. .. code-block:: python3 import pm4py log = pm4py.read_xes("tests/input_data/running-example.xes") descr = pm4py.llm.explain_visualization(pm4py.save_vis_dotted_chart, log, api_key="sk-5HN", show_legend=False) print(descr) """ F = NamedTemporaryFile(suffix=".png") image_path = F.name F.close() description = vis_saver(*args, image_path, **kwargs) parameters = copy(kwargs) if kwargs is not None else {} parameters["image_path"] = image_path return connector( "Could you explain the included process mining visualization?\n\n" + description, **parameters )