Source code for pm4py.objects.conversion.log.variants.to_data_frame
'''
PM4Py – A Process Mining Library for Python
Copyright (C) 2024 Process Intelligence Solutions UG (haftungsbeschränkt)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as
published by the Free Software Foundation, either version 3 of the
License, or any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public License
along with this program. If not, see this software project's root or
visit <https://www.gnu.org/licenses/>.
Website: https://processintelligence.solutions
Contact: info@processintelligence.solutions
'''
from enum import Enum
from pm4py.objects.conversion.log.variants import to_event_stream
from pm4py.objects.log import obj as log_instance
from pm4py.objects.conversion.log import constants
from copy import copy
from pm4py.util import constants as pm4_constants
from pm4py.util import pandas_utils
[docs]
class Parameters(Enum):
DEEP_COPY = constants.DEEPCOPY
STREAM_POST_PROCESSING = constants.STREAM_POSTPROCESSING
CASE_ATTRIBUTE_PREFIX = "case_attribute_prefix"
[docs]
def apply(log, parameters=None):
"""
Converts a provided event log object into a Pandas dataframe. As a basis, an EventStream object is used.
In case an EventLog object is given, it is first converted to an EventStream object.
Within the conversion, the order is not changed, i.e., the order imposed by the iterator is used.
Parameters
-----------
log :class:`pm4py.log.log.EventLog`
Event log object, can either be an EventLog object, EventStream Object or Pandas dataframe
parameters :class:`dict`
Parameters of the algorithm (currently, this converter is parameter free)
Returns
-----------
df
Pandas dataframe
"""
import pandas as pd
if parameters is None:
parameters = dict()
if pandas_utils.check_is_pandas_dataframe(log):
return log
if type(log) is log_instance.EventLog:
new_parameters = copy(parameters)
new_parameters["deepcopy"] = False
log = to_event_stream.apply(log, parameters=new_parameters)
transf_log = [dict(x) for x in log]
df = pandas_utils.instantiate_dataframe(transf_log)
df.attrs = copy(log.properties)
if pm4_constants.PARAMETER_CONSTANT_CASEID_KEY in df.attrs:
del df.attrs[pm4_constants.PARAMETER_CONSTANT_CASEID_KEY]
return df