Source code for pm4py.objects.log.util.pandas_numpy_variants

'''
    PM4Py – A Process Mining Library for Python
Copyright (C) 2024 Process Intelligence Solutions UG (haftungsbeschränkt)

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as
published by the Free Software Foundation, either version 3 of the
License, or any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU Affero General Public License for more details.

You should have received a copy of the GNU Affero General Public License
along with this program.  If not, see this software project's root or
visit <https://www.gnu.org/licenses/>.

Website: https://processintelligence.solutions
Contact: info@processintelligence.solutions
'''
import pandas as pd
from enum import Enum
from pm4py.util import constants, xes_constants, pandas_utils, exec_utils
import numpy as np
from collections import Counter
from typing import Tuple, Dict, Collection
import importlib.util


[docs] class Parameters(Enum): CASE_ID_KEY = constants.PARAMETER_CONSTANT_CASEID_KEY ACTIVITY_KEY = constants.PARAMETER_CONSTANT_ACTIVITY_KEY TIMESTAMP_KEY = constants.PARAMETER_CONSTANT_TIMESTAMP_KEY INDEX_KEY = "index_key"
[docs] def apply( dataframe: pd.DataFrame, parameters=None ) -> Tuple[Dict[Collection[str], int], Dict[str, Collection[str]]]: """ Efficient method returning the variants from a Pandas dataframe (through Numpy) Minimum viable example: import pandas as pd import pm4py from pm4py.objects.log.util import pandas_numpy_variants dataframe = pd.read_csv('tests/input_data/receipt.csv') dataframe = pm4py.format_dataframe(dataframe) variants_dict, case_variant = pandas_numpy_variants.apply(dataframe) Parameters ------------------ dataframe Dataframe parameters Parameters of the algorithm, including: - Parameters.CASE_ID_KEY => the case identifier - Parameters.ACTIVITY_KEY => the activity - Parameters.TIMESTAMP_KEY => the timestamp - Parameters.INDEX_KEY => the index Returns ------------------ variants_dict Dictionary associating to each variant the number of occurrences in the dataframe case_variant Dictionary associating to each case identifier the corresponding variant """ if parameters is None: parameters = {} case_id_key = exec_utils.get_param_value( Parameters.CASE_ID_KEY, parameters, constants.CASE_CONCEPT_NAME ) activity_key = exec_utils.get_param_value( Parameters.ACTIVITY_KEY, parameters, xes_constants.DEFAULT_NAME_KEY ) timestamp_key = exec_utils.get_param_value( Parameters.TIMESTAMP_KEY, parameters, xes_constants.DEFAULT_TIMESTAMP_KEY, ) index_key = exec_utils.get_param_value( Parameters.INDEX_KEY, parameters, constants.DEFAULT_INDEX_KEY ) if not (hasattr(dataframe, "attrs") and dataframe.attrs): # dataframe has not been initialized through format_dataframe dataframe = pandas_utils.insert_index(dataframe, index_key) dataframe.sort_values([case_id_key, timestamp_key, index_key]) case_variant = dict() if importlib.util.find_spec("cudf"): case_variant = ( dataframe.groupby(case_id_key)[activity_key].agg(list).to_dict() ) case_variant = {x: tuple(y) for x, y in case_variant.items()} variants_counter = Counter(case_variant.values()) else: variants_counter = Counter() cases = dataframe[case_id_key].to_numpy() activities = dataframe[activity_key].to_numpy() c_unq, c_ind, c_counts = np.unique( cases, return_index=True, return_counts=True ) for i in range(len(c_ind)): si = c_ind[i] ei = si + c_counts[i] acts = tuple(activities[si:ei]) variants_counter[acts] += 1 case_variant[c_unq[i]] = acts # return as Python dictionary variants_dict = {x: y for x, y in variants_counter.items()} return variants_dict, case_variant