Source code for pm4py.objects.random_variables.deterministic.random_variable

'''
    PM4Py – A Process Mining Library for Python
Copyright (C) 2024 Process Intelligence Solutions UG (haftungsbeschränkt)

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as
published by the Free Software Foundation, either version 3 of the
License, or any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU Affero General Public License for more details.

You should have received a copy of the GNU Affero General Public License
along with this program.  If not, see this software project's root or
visit <https://www.gnu.org/licenses/>.

Website: https://processintelligence.solutions
Contact: info@processintelligence.solutions
'''
import sys

from pm4py.objects.random_variables.basic_structure import (
    BasicStructureRandomVariable,
)


[docs] class Deterministic(BasicStructureRandomVariable): """ Describes a deterministic random variable """ def __init__(self, value=0): """ Constructor Parameters ---------- value Constant value of the distribution """ BasicStructureRandomVariable.__init__(self) self.value = value self.priority = 1
[docs] def read_from_string(self, distribution_parameters): """ Initialize distribution parameters from string Parameters ----------- distribution_parameters Current distribution parameters as exported on the Petri net """ self.value = distribution_parameters
[docs] def get_transition_type(self): """ Get the type of transition associated to the current distribution Returns ----------- transition_type String representing the type of the transition """ return "DETERMINISTIC"
[docs] def get_distribution_type(self): """ Get current distribution type Returns ----------- distribution_type String representing the distribution type """ return "DETERMINISTIC"
[docs] def get_distribution_parameters(self): """ Get a string representing distribution parameters Returns ----------- distribution_parameters String representing distribution parameters """ return str(self.value)
[docs] def get_value(self): """ Get a random value following the distribution Returns ----------- value Value obtained following the distribution """ return self.value
[docs] def get_values(self, no_values=400): """ Get some random values following the distribution Parameters ----------- no_values Number of values to return Returns ---------- values Values extracted according to the probability distribution """ return [self.get_value() for i in range(no_values)]
[docs] def calculate_loglikelihood(self, values, tol=0.0001): """ Calculate log likelihood Parameters ------------ values Empirical values to work on tol Tolerance about float values (consider them 0?) Returns ------------ likelihood Log likelihood that the values follows the distribution """ values_0 = [x for x in values if abs(x - self.value) < tol] if len(values) == len(values_0): return sys.float_info.max return -sys.float_info.max