Source code for pm4py.objects.random_variables.exponential.random_variable

'''
    PM4Py – A Process Mining Library for Python
Copyright (C) 2024 Process Intelligence Solutions UG (haftungsbeschränkt)

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as
published by the Free Software Foundation, either version 3 of the
License, or any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU Affero General Public License for more details.

You should have received a copy of the GNU Affero General Public License
along with this program.  If not, see this software project's root or
visit <https://www.gnu.org/licenses/>.

Website: https://processintelligence.solutions
Contact: info@processintelligence.solutions
'''
import sys

import numpy as np

from pm4py.objects.random_variables.basic_structure import (
    BasicStructureRandomVariable,
)


[docs] class Exponential(BasicStructureRandomVariable): """ Describes a normal variable """ def __init__(self, loc=1, scale=1): """ Constructor Parameters ----------- loc Loc of the distribution (see docs.scipy.org/doc/scipy/reference/generated/scipy.stats.expon.html) scale Scale of the distribution """ self.loc = loc self.scale = scale self.priority = 0 BasicStructureRandomVariable.__init__(self)
[docs] def read_from_string(self, distribution_parameters): """ Initialize distribution parameters from string Parameters ----------- distribution_parameters Current distribution parameters as exported on the Petri net """ self.loc = 0 self.scale = 1.0 / float(distribution_parameters)
[docs] def get_distribution_type(self): """ Get current distribution type Returns ----------- distribution_type String representing the distribution type """ return "EXPONENTIAL"
[docs] def get_distribution_parameters(self): """ Get a string representing distribution parameters Returns ----------- distribution_parameters String representing distribution parameters """ if self.scale > 0: return str(1.0 / float(self.scale)) return "UNDEFINED"
[docs] def calculate_loglikelihood(self, values): """ Calculate log likelihood Parameters ------------ values Empirical values to work on Returns ------------ likelihood Log likelihood that the values follows the distribution """ from scipy.stats import expon if len(values) > 1: somma = 0 for value in values: somma = somma + np.log(expon.pdf(value, self.loc, self.scale)) return somma return -sys.float_info.max
[docs] def calculate_parameters(self, values): """ Calculate parameters of the current distribution Parameters ----------- values Empirical values to work on """ from scipy.stats import expon if len(values) > 1: self.loc, self.scale = expon.fit(values, floc=0)
[docs] def get_value(self): """ Get a random value following the distribution Returns ----------- value Value obtained following the distribution """ from scipy.stats import expon return expon.rvs(self.loc, self.scale)