Source code for pm4py.objects.random_variables.gamma.random_variable

'''
    PM4Py – A Process Mining Library for Python
Copyright (C) 2024 Process Intelligence Solutions UG (haftungsbeschränkt)

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as
published by the Free Software Foundation, either version 3 of the
License, or any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU Affero General Public License for more details.

You should have received a copy of the GNU Affero General Public License
along with this program.  If not, see this software project's root or
visit <https://www.gnu.org/licenses/>.

Website: https://processintelligence.solutions
Contact: info@processintelligence.solutions
'''
import sys

import numpy as np

from pm4py.objects.random_variables.basic_structure import (
    BasicStructureRandomVariable,
)
from pm4py.util import constants
import warnings


[docs] class Gamma(BasicStructureRandomVariable): """ Describes a normal variable """ def __init__(self, a=1, loc=0, scale=1): """ Constructor """ self.a = a self.loc = loc self.scale = scale BasicStructureRandomVariable.__init__(self)
[docs] def read_from_string(self, distribution_parameters): """ Initialize distribution parameters from string Parameters ----------- distribution_parameters Current distribution parameters as exported on the Petri net """ self.a = float(distribution_parameters.split(";")[0]) self.loc = float(distribution_parameters.split(";")[1]) self.scale = float(distribution_parameters.split(";")[2])
[docs] def get_distribution_type(self): """ Get current distribution type Returns ----------- distribution_type String representing the distribution type """ return "GAMMA"
[docs] def get_distribution_parameters(self): """ Get a string representing distribution parameters Returns ----------- distribution_parameters String representing distribution parameters """ return str(self.a) + ";" + str(self.loc) + ";" + str(self.scale)
[docs] def calculate_loglikelihood(self, values): """ Calculate log likelihood Parameters ------------ values Empirical values to work on Returns ------------ likelihood Log likelihood that the values follows the distribution """ from scipy.stats import gamma if len(values) > 1: somma = 0 for value in values: somma = somma + np.log( gamma.pdf(value, self.a, self.loc, self.scale) ) return somma return -sys.float_info.max
[docs] def calculate_parameters(self, values): """ Calculate parameters of the current distribution Parameters ----------- values Empirical values to work on """ from scipy.stats import gamma if len(values) > 1: try: self.a, self.loc, self.scale = gamma.fit(values) except BaseException: if constants.SHOW_INTERNAL_WARNINGS: warnings.warn( "Gamma fitting: Optimization converged to parameters that are outside the range allowed by the distribution" )
[docs] def get_value(self): """ Get a random value following the distribution Returns ----------- value Value obtained following the distribution """ from scipy.stats import gamma return gamma.rvs(self.a, self.loc, self.scale)