'''
PM4Py – A Process Mining Library for Python
Copyright (C) 2024 Process Intelligence Solutions UG (haftungsbeschränkt)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as
published by the Free Software Foundation, either version 3 of the
License, or any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public License
along with this program. If not, see this software project's root or
visit <https://www.gnu.org/licenses/>.
Website: https://processintelligence.solutions
Contact: info@processintelligence.solutions
'''
__doc__ = """
The ``pm4py.org`` module contains organizational analysis techniques offered in ``pm4py``.
"""
from typing import Union
import pandas as pd
from pm4py.objects.log.obj import EventLog, EventStream
from pm4py.util.pandas_utils import (
check_is_pandas_dataframe,
check_pandas_dataframe_columns,
)
from pm4py.utils import get_properties, __event_log_deprecation_warning
from pm4py.objects.org.sna.obj import SNA
from pm4py.objects.org.roles.obj import Role
from pm4py.util import xes_constants
from typing import Dict, Tuple, Any, List
[docs]
def discover_handover_of_work_network(
log: Union[EventLog, pd.DataFrame],
beta=0,
resource_key: str = "org:resource",
timestamp_key: str = "time:timestamp",
case_id_key: str = "case:concept:name",
) -> SNA:
"""
Calculates the handover of work network of the event log.
The handover of work network is essentially the Directly-Follows Graph (DFG) of the event log, but using the
resource as the nodes of the graph instead of activities.
As such, resource information should be present in the event log.
:param log: Event log or Pandas DataFrame.
:param beta: Beta parameter for the Handover metric.
:param resource_key: Attribute to be used for the resource.
:param timestamp_key: Attribute to be used for the timestamp.
:param case_id_key: Attribute to be used as case identifier.
.. code-block:: python3
import pm4py
metric = pm4py.discover_handover_of_work_network(
dataframe,
beta=0,
resource_key='org:resource',
timestamp_key='time:timestamp',
case_id_key='case:concept:name'
)
"""
__event_log_deprecation_warning(log)
from pm4py.algo.organizational_mining.sna import algorithm as sna
parameters = get_properties(
log,
resource_key=resource_key,
timestamp_key=timestamp_key,
case_id_key=case_id_key,
)
parameters["beta"] = beta
if check_is_pandas_dataframe(log):
check_pandas_dataframe_columns(
log, timestamp_key=timestamp_key, case_id_key=case_id_key
)
return sna.apply(
log, variant=sna.Variants.HANDOVER_PANDAS, parameters=parameters
)
else:
return sna.apply(
log, variant=sna.Variants.HANDOVER_LOG, parameters=parameters
)
[docs]
def discover_working_together_network(
log: Union[EventLog, pd.DataFrame],
resource_key: str = "org:resource",
timestamp_key: str = "time:timestamp",
case_id_key: str = "case:concept:name",
) -> SNA:
"""
Calculates the working together network of the process.
Two resource nodes are connected in the graph if the resources collaborate on an instance of the process.
:param log: Event log or Pandas DataFrame.
:param resource_key: Attribute to be used for the resource.
:param timestamp_key: Attribute to be used for the timestamp.
:param case_id_key: Attribute to be used as case identifier.
.. code-block:: python3
import pm4py
metric = pm4py.discover_working_together_network(
dataframe,
resource_key='org:resource',
timestamp_key='time:timestamp',
case_id_key='case:concept:name'
)
"""
__event_log_deprecation_warning(log)
properties = get_properties(
log,
resource_key=resource_key,
timestamp_key=timestamp_key,
case_id_key=case_id_key,
)
from pm4py.algo.organizational_mining.sna import algorithm as sna
if check_is_pandas_dataframe(log):
check_pandas_dataframe_columns(
log, timestamp_key=timestamp_key, case_id_key=case_id_key
)
return sna.apply(
log,
variant=sna.Variants.WORKING_TOGETHER_PANDAS,
parameters=properties,
)
else:
return sna.apply(
log,
variant=sna.Variants.WORKING_TOGETHER_LOG,
parameters=properties,
)
[docs]
def discover_activity_based_resource_similarity(
log: Union[EventLog, pd.DataFrame],
activity_key: str = "concept:name",
resource_key: str = "org:resource",
timestamp_key: str = "time:timestamp",
case_id_key: str = "case:concept:name",
) -> SNA:
"""
Calculates similarity between the resources in the event log based on their activity profiles.
:param log: Event log or Pandas DataFrame.
:param activity_key: Attribute to be used for the activity.
:param resource_key: Attribute to be used for the resource.
:param timestamp_key: Attribute to be used for the timestamp.
:param case_id_key: Attribute to be used as case identifier.
.. code-block:: python3
import pm4py
act_res_sim = pm4py.discover_activity_based_resource_similarity(
dataframe,
resource_key='org:resource',
activity_key='concept:name',
timestamp_key='time:timestamp',
case_id_key='case:concept:name'
)
"""
__event_log_deprecation_warning(log)
properties = get_properties(
log,
activity_key=activity_key,
resource_key=resource_key,
timestamp_key=timestamp_key,
case_id_key=case_id_key,
)
from pm4py.algo.organizational_mining.sna import algorithm as sna
if check_is_pandas_dataframe(log):
check_pandas_dataframe_columns(
log,
activity_key=activity_key,
timestamp_key=timestamp_key,
case_id_key=case_id_key,
)
return sna.apply(
log,
variant=sna.Variants.JOINTACTIVITIES_PANDAS,
parameters=properties,
)
else:
return sna.apply(
log,
variant=sna.Variants.JOINTACTIVITIES_LOG,
parameters=properties,
)
[docs]
def discover_subcontracting_network(
log: Union[EventLog, pd.DataFrame],
n=2,
resource_key: str = "org:resource",
timestamp_key: str = "time:timestamp",
case_id_key: str = "case:concept:name",
) -> SNA:
"""
Calculates the subcontracting network of the process.
:param log: Event log or Pandas DataFrame.
:param n: N parameter for the Subcontracting metric.
:param resource_key: Attribute to be used for the resource.
:param timestamp_key: Attribute to be used for the timestamp.
:param case_id_key: Attribute to be used as case identifier.
.. code-block:: python3
import pm4py
metric = pm4py.discover_subcontracting_network(
dataframe,
n=2,
resource_key='org:resource',
timestamp_key='time:timestamp',
case_id_key='case:concept:name'
)
"""
__event_log_deprecation_warning(log)
from pm4py.algo.organizational_mining.sna import algorithm as sna
parameters = get_properties(
log,
resource_key=resource_key,
timestamp_key=timestamp_key,
case_id_key=case_id_key,
)
parameters["n"] = n
if check_is_pandas_dataframe(log):
check_pandas_dataframe_columns(
log, timestamp_key=timestamp_key, case_id_key=case_id_key
)
return sna.apply(
log,
variant=sna.Variants.SUBCONTRACTING_PANDAS,
parameters=parameters,
)
else:
return sna.apply(
log, variant=sna.Variants.SUBCONTRACTING_LOG, parameters=parameters
)
[docs]
def discover_organizational_roles(
log: Union[EventLog, pd.DataFrame],
activity_key: str = "concept:name",
resource_key: str = "org:resource",
timestamp_key: str = "time:timestamp",
case_id_key: str = "case:concept:name",
) -> List[Role]:
"""
Mines the organizational roles.
A role is a set of activities in the log that are executed by a similar (multi)set of resources. Hence, it is a specific function within the organization. Grouping the activities into roles can help:
Reference paper:
Burattin, Andrea, Alessandro Sperduti, and Marco Veluscek. “Business models enhancement through discovery of roles.” 2013 IEEE Symposium on Computational Intelligence and Data Mining (CIDM). IEEE, 2013.
:param log: Event log or Pandas DataFrame.
:param activity_key: Attribute to be used for the activity.
:param resource_key: Attribute to be used for the resource.
:param timestamp_key: Attribute to be used for the timestamp.
:param case_id_key: Attribute to be used as case identifier.
.. code-block:: python3
import pm4py
roles = pm4py.discover_organizational_roles(
dataframe,
resource_key='org:resource',
activity_key='concept:name',
timestamp_key='time:timestamp',
case_id_key='case:concept:name'
)
"""
__event_log_deprecation_warning(log)
properties = get_properties(
log,
activity_key=activity_key,
resource_key=resource_key,
timestamp_key=timestamp_key,
case_id_key=case_id_key,
)
from pm4py.algo.organizational_mining.roles import algorithm as roles
if check_is_pandas_dataframe(log):
check_pandas_dataframe_columns(
log,
activity_key=activity_key,
timestamp_key=timestamp_key,
case_id_key=case_id_key,
)
return roles.apply(
log, variant=roles.Variants.PANDAS, parameters=properties
)
else:
return roles.apply(
log, variant=roles.Variants.LOG, parameters=properties
)
[docs]
def discover_network_analysis(
log: Union[pd.DataFrame, EventLog, EventStream],
out_column: str,
in_column: str,
node_column_source: str,
node_column_target: str,
edge_column: str,
edge_reference: str = "_out",
performance: bool = False,
sorting_column: str = xes_constants.DEFAULT_TIMESTAMP_KEY,
timestamp_column: str = xes_constants.DEFAULT_TIMESTAMP_KEY,
) -> Dict[Tuple[str, str], Dict[str, Any]]:
"""
Performs a network analysis of the log based on the provided parameters.
Classical social network analysis methods are based on the order of events within a case. For example, the Handover of Work metric considers the directly-follows relationships between resources during the execution of a case. An edge is added between two resources if such a relationship occurs.
Real-life scenarios may be more complicated. Firstly, it is difficult to collect events within the same case without encountering convergence/divergence issues (see the first section of the OCEL part). Secondly, the type of relationship may also be important. For example, the relationship between two resources may be more efficient if the activity executed is liked by the resources rather than disliked.
The network analysis introduced here generalizes some existing social network analysis metrics, making them independent of the case notion and allowing the construction of a multigraph instead of a simple graph.
We assume events are linked by signals. An event emits a signal (contained in one attribute of the event) that is assumed to be received by other events (also containing this attribute) that follow the first event in the log. We assume there is an OUT attribute (of the event) that is identical to the IN attribute (of the other events).
When collecting this information, we can build the network analysis graph:
- The source node of the relationship is determined by aggregating the `node_column_source` attribute.
- The target node of the relationship is determined by aggregating the `node_column_target` attribute.
- The type of edge is determined by aggregating the `edge_column` attribute.
- The network analysis graph can be annotated with frequency or performance information.
The output is a multigraph.
Two events EV1 and EV2 in the log are connected (independently of the case notion) based on having
EV1.OUT_COLUMN = EV2.IN_COLUMN.
Then, an aggregation is applied on the pair of events (NODE_COLUMN) to obtain the connected nodes.
The edges between these nodes are aggregated based on some property of the *source* event (`edge_column`).
:param log: Event log, Pandas DataFrame, or EventStream.
:param out_column: The source column of the link (default: the case identifier; events of the same case are linked).
:param in_column: The target column of the link (default: the case identifier; events of the same case are linked).
:param node_column_source: The attribute to be used for defining the source node (default: the resource of the log, "org:resource").
:param node_column_target: The attribute to be used for defining the target node (default: the resource of the log, "org:resource").
:param edge_column: The attribute to be used for defining the edge (default: the activity of the log, "concept:name").
:param edge_reference: Determines if the edge attribute should be picked from the source event. Values: "_out" => the source event; "_in" => the target event.
:param performance: Boolean value that enables performance calculation on the edges of the network analysis.
:param sorting_column: The column to be used for sorting the log before performing the network analysis (default: "time:timestamp").
:param timestamp_column: The column to be used as timestamp for performance-related analysis (default: "time:timestamp").
:rtype: ``Dict[Tuple[str, str], Dict[str, Any]]``
.. code-block:: python3
import pm4py
net_ana = pm4py.discover_network_analysis(
dataframe,
out_column='case:concept:name',
in_column='case:concept:name',
node_column_source='org:resource',
node_column_target='org:resource',
edge_column='concept:name',
edge_reference='_out',
performance=False,
sorting_column='time:timestamp',
timestamp_column='time:timestamp'
)
"""
__event_log_deprecation_warning(log)
if check_is_pandas_dataframe(log):
check_pandas_dataframe_columns(log)
from pm4py.algo.organizational_mining.network_analysis.variants import (
dataframe,
)
parameters = {}
parameters[dataframe.Parameters.OUT_COLUMN] = out_column
parameters[dataframe.Parameters.IN_COLUMN] = in_column
parameters[dataframe.Parameters.NODE_COLUMN_SOURCE] = node_column_source
parameters[dataframe.Parameters.NODE_COLUMN_TARGET] = node_column_target
parameters[dataframe.Parameters.EDGE_COLUMN] = edge_column
parameters[dataframe.Parameters.EDGE_REFERENCE] = edge_reference
parameters[dataframe.Parameters.SORTING_COLUMN] = sorting_column
parameters[dataframe.Parameters.TIMESTAMP_KEY] = timestamp_column
parameters[dataframe.Parameters.INCLUDE_PERFORMANCE] = performance
from pm4py.algo.organizational_mining.network_analysis import (
algorithm as network_analysis,
)
return network_analysis.apply(log, parameters=parameters)