Source code for pm4py.statistics.concurrent_activities.pandas.get
'''
PM4Py – A Process Mining Library for Python
Copyright (C) 2024 Process Intelligence Solutions UG (haftungsbeschränkt)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as
published by the Free Software Foundation, either version 3 of the
License, or any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public License
along with this program. If not, see this software project's root or
visit <https://www.gnu.org/licenses/>.
Website: https://processintelligence.solutions
Contact: info@processintelligence.solutions
'''
from enum import Enum
from pm4py.algo.discovery.dfg.adapters.pandas.df_statistics import (
get_concurrent_events_dataframe,
)
from pm4py.util import exec_utils, constants, xes_constants
from typing import Optional, Dict, Any, Union, Tuple
import pandas as pd
[docs]
class Parameters(Enum):
ACTIVITY_KEY = constants.PARAMETER_CONSTANT_ACTIVITY_KEY
CASE_ID_KEY = constants.PARAMETER_CONSTANT_CASEID_KEY
TIMESTAMP_KEY = constants.PARAMETER_CONSTANT_TIMESTAMP_KEY
START_TIMESTAMP_KEY = constants.PARAMETER_CONSTANT_START_TIMESTAMP_KEY
STRICT = "strict"
[docs]
def apply(
dataframe: pd.DataFrame,
parameters: Optional[Dict[Union[str, Parameters], Any]] = None,
) -> Dict[Tuple[str, str], int]:
"""
Gets the number of times for which two activities have been concurrent in the log
Parameters
--------------
dataframe
Pandas dataframe
parameters
Parameters of the algorithm, including:
- Parameters.ACTIVITY_KEY => activity key
- Parameters.CASE_ID_KEY => case id
- Parameters.START_TIMESTAMP_KEY => start timestamp
- Parameters.TIMESTAMP_KEY => complete timestamp
- Parameters.STRICT => Determine if only entries that are strictly concurrent
(i.e. the length of the intersection as real interval is > 0) should be obtained. Default: False
Returns
--------------
ret_dict
Dictionaries associating to a couple of activities (tuple) the number of times for which they have been
executed in parallel in the log
"""
if parameters is None:
parameters = {}
activity_key = exec_utils.get_param_value(
Parameters.ACTIVITY_KEY, parameters, xes_constants.DEFAULT_NAME_KEY
)
case_id_glue = exec_utils.get_param_value(
Parameters.CASE_ID_KEY, parameters, constants.CASE_CONCEPT_NAME
)
timestamp_key = exec_utils.get_param_value(
Parameters.TIMESTAMP_KEY,
parameters,
xes_constants.DEFAULT_TIMESTAMP_KEY,
)
start_timestamp_key = exec_utils.get_param_value(
Parameters.START_TIMESTAMP_KEY, parameters, None
)
strict = exec_utils.get_param_value(Parameters.STRICT, parameters, False)
concurrent_dataframe = get_concurrent_events_dataframe(
dataframe,
start_timestamp_key=start_timestamp_key,
timestamp_key=timestamp_key,
case_id_glue=case_id_glue,
activity_key=activity_key,
strict=strict,
)
ret_dict0 = (
concurrent_dataframe.groupby([activity_key, activity_key + "_2"])
.size()
.to_dict()
)
ret_dict = {}
# assure to avoid problems with np.float64, by using the Python float type
for el in ret_dict0:
# avoid getting two entries for the same set of concurrent activities
el2 = tuple(sorted(el))
ret_dict[el2] = int(ret_dict0[el])
return ret_dict