Source code for pm4py.statistics.ocel.act_ot_dependent
'''
PM4Py – A Process Mining Library for Python
Copyright (C) 2024 Process Intelligence Solutions UG (haftungsbeschränkt)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as
published by the Free Software Foundation, either version 3 of the
License, or any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public License
along with this program. If not, see this software project's root or
visit <https://www.gnu.org/licenses/>.
Website: https://processintelligence.solutions
Contact: info@processintelligence.solutions
'''
from typing import Optional, Dict, Any, Tuple, Set, List
from enum import Enum
from pm4py.util import exec_utils
from pm4py.objects.ocel import constants as ocel_constants
from pm4py.objects.ocel.obj import OCEL
from pm4py.statistics.ocel.act_utils import find_associations_from_relations_df
[docs]
class Parameters(Enum):
OBJECT_TYPE = ocel_constants.PARAM_OBJECT_TYPE
[docs]
def aggregate_events(
associations: Dict[str, Dict[str, Set[Tuple[str, str]]]]
) -> Dict[str, Dict[str, Set[Tuple[str, str]]]]:
"""
Utility method to calculate the "events" metric from the object-type specific associations.
"""
ret = {}
for ot in associations:
ret[ot] = {}
for act in associations[ot]:
ret[ot][act] = set()
for el in associations[ot][act]:
ret[ot][act].add(el[0])
return ret
[docs]
def aggregate_unique_objects(
associations: Dict[str, Dict[str, Set[Tuple[str, str]]]]
) -> Dict[str, Dict[str, Set[Tuple[str, str]]]]:
"""
Utility method to calculate the "unique objects" metric from the object-type specific associations.
"""
ret = {}
for ot in associations:
ret[ot] = {}
for act in associations[ot]:
ret[ot][act] = set()
for el in associations[ot][act]:
ret[ot][act].add(el[1])
return ret
[docs]
def aggregate_total_objects(
associations: Dict[str, Dict[str, Set[Tuple[str, str]]]]
) -> Dict[str, Dict[str, Set[Tuple[str, str]]]]:
"""
Utility method to calculate the "total objects" metric from the object-type specific associations.
"""
return associations
[docs]
def find_associations_from_ocel(
ocel: OCEL, parameters: Optional[Dict[Any, Any]] = None
) -> Dict[str, Dict[str, List[Tuple[str, str]]]]:
"""
Associates each object type and activity in the object-centric event log with the combinations
of event identifiers and objects that are associated to them.
Parameters
------------------
ocel
Object-centric event log
parameters
Parameters of the method, including:
- Parameters.EVENT_ID => the attribute to use as event identifier
- Parameters.OBJECT_ID => the attribute to use as object identifier
- Parameters.EVENT_ACTIVITY => the attribute to use as activity
Returns
-----------------
dict_associations
Dictionary that associates each object type (first key) and activity (second key)
to its (ev. id, obj id.) combinations.
"""
if parameters is None:
parameters = {}
object_type = exec_utils.get_param_value(
Parameters.OBJECT_TYPE, parameters, ocel.object_type_column
)
ret = {}
for ot, relations in ocel.relations.groupby(object_type):
ret[ot] = find_associations_from_relations_df(
relations, parameters=parameters
)
return ret