Source code for pm4py.statistics.ocel.act_ot_dependent

'''
    PM4Py – A Process Mining Library for Python
Copyright (C) 2024 Process Intelligence Solutions UG (haftungsbeschränkt)

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as
published by the Free Software Foundation, either version 3 of the
License, or any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU Affero General Public License for more details.

You should have received a copy of the GNU Affero General Public License
along with this program.  If not, see this software project's root or
visit <https://www.gnu.org/licenses/>.

Website: https://processintelligence.solutions
Contact: info@processintelligence.solutions
'''

from typing import Optional, Dict, Any, Tuple, Set, List
from enum import Enum
from pm4py.util import exec_utils
from pm4py.objects.ocel import constants as ocel_constants
from pm4py.objects.ocel.obj import OCEL
from pm4py.statistics.ocel.act_utils import find_associations_from_relations_df


[docs] class Parameters(Enum): OBJECT_TYPE = ocel_constants.PARAM_OBJECT_TYPE
[docs] def aggregate_events( associations: Dict[str, Dict[str, Set[Tuple[str, str]]]] ) -> Dict[str, Dict[str, Set[Tuple[str, str]]]]: """ Utility method to calculate the "events" metric from the object-type specific associations. """ ret = {} for ot in associations: ret[ot] = {} for act in associations[ot]: ret[ot][act] = set() for el in associations[ot][act]: ret[ot][act].add(el[0]) return ret
[docs] def aggregate_unique_objects( associations: Dict[str, Dict[str, Set[Tuple[str, str]]]] ) -> Dict[str, Dict[str, Set[Tuple[str, str]]]]: """ Utility method to calculate the "unique objects" metric from the object-type specific associations. """ ret = {} for ot in associations: ret[ot] = {} for act in associations[ot]: ret[ot][act] = set() for el in associations[ot][act]: ret[ot][act].add(el[1]) return ret
[docs] def aggregate_total_objects( associations: Dict[str, Dict[str, Set[Tuple[str, str]]]] ) -> Dict[str, Dict[str, Set[Tuple[str, str]]]]: """ Utility method to calculate the "total objects" metric from the object-type specific associations. """ return associations
[docs] def find_associations_from_ocel( ocel: OCEL, parameters: Optional[Dict[Any, Any]] = None ) -> Dict[str, Dict[str, List[Tuple[str, str]]]]: """ Associates each object type and activity in the object-centric event log with the combinations of event identifiers and objects that are associated to them. Parameters ------------------ ocel Object-centric event log parameters Parameters of the method, including: - Parameters.EVENT_ID => the attribute to use as event identifier - Parameters.OBJECT_ID => the attribute to use as object identifier - Parameters.EVENT_ACTIVITY => the attribute to use as activity Returns ----------------- dict_associations Dictionary that associates each object type (first key) and activity (second key) to its (ev. id, obj id.) combinations. """ if parameters is None: parameters = {} object_type = exec_utils.get_param_value( Parameters.OBJECT_TYPE, parameters, ocel.object_type_column ) ret = {} for ot, relations in ocel.relations.groupby(object_type): ret[ot] = find_associations_from_relations_df( relations, parameters=parameters ) return ret