Source code for pm4py.statistics.overlap.cases.pandas.get

'''
    PM4Py – A Process Mining Library for Python
Copyright (C) 2024 Process Intelligence Solutions UG (haftungsbeschränkt)

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as
published by the Free Software Foundation, either version 3 of the
License, or any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU Affero General Public License for more details.

You should have received a copy of the GNU Affero General Public License
along with this program.  If not, see this software project's root or
visit <https://www.gnu.org/licenses/>.

Website: https://processintelligence.solutions
Contact: info@processintelligence.solutions
'''
from enum import Enum
from typing import Dict, Optional, Any, List, Union

import pandas as pd

from pm4py.statistics.overlap.utils import compute
from pm4py.util import exec_utils, constants, xes_constants


[docs] class Parameters(Enum): TIMESTAMP_KEY = constants.PARAMETER_CONSTANT_TIMESTAMP_KEY START_TIMESTAMP_KEY = constants.PARAMETER_CONSTANT_START_TIMESTAMP_KEY CASE_ID_KEY = constants.PARAMETER_CONSTANT_CASEID_KEY
[docs] def apply( df: pd.DataFrame, parameters: Optional[Dict[Union[str, Parameters], Any]] = None, ) -> List[int]: """ Computes the case overlap statistic from a Pandas dataframe Parameters ----------------- df Dataframe parameters Parameters of the algorithm, including: - Parameters.TIMESTAMP_KEY => attribute representing the completion timestamp - Parameters.START_TIMESTAMP_KEY => attribute representing the start timestamp Returns ---------------- case_overlap List associating to each case the number of open cases during the life of a case """ if parameters is None: parameters = {} timestamp_key = exec_utils.get_param_value( Parameters.TIMESTAMP_KEY, parameters, xes_constants.DEFAULT_TIMESTAMP_KEY, ) start_timestamp_key = exec_utils.get_param_value( Parameters.START_TIMESTAMP_KEY, parameters, xes_constants.DEFAULT_TIMESTAMP_KEY, ) case_id_key = exec_utils.get_param_value( Parameters.CASE_ID_KEY, parameters, constants.CASE_CONCEPT_NAME ) columns = list({timestamp_key, start_timestamp_key, case_id_key}) stream = df[columns].to_dict("records") points = [] cases = [] cases_points = {} for event in stream: case_id = event[case_id_key] if case_id not in cases: cases.append(case_id) cases_points[case_id] = [] cases_points[case_id].append( ( event[start_timestamp_key].timestamp(), event[timestamp_key].timestamp(), ) ) for case in cases: case_points = cases_points[case] points.append( (min(x[0] for x in case_points), max(x[1] for x in case_points)) ) return compute.apply(points, parameters=parameters)