Source code for pm4py.statistics.passed_time.pandas.variants.post
'''
PM4Py – A Process Mining Library for Python
Copyright (C) 2024 Process Intelligence Solutions UG (haftungsbeschränkt)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as
published by the Free Software Foundation, either version 3 of the
License, or any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public License
along with this program. If not, see this software project's root or
visit <https://www.gnu.org/licenses/>.
Website: https://processintelligence.solutions
Contact: info@processintelligence.solutions
'''
from pm4py.util.xes_constants import DEFAULT_NAME_KEY, DEFAULT_TIMESTAMP_KEY
from pm4py.util.constants import CASE_CONCEPT_NAME
from pm4py.algo.discovery.dfg.adapters.pandas import df_statistics as pandas
from pm4py.util import exec_utils
from pm4py.util import constants
from enum import Enum
from typing import Optional, Dict, Any
import pandas as pd
[docs]
class Parameters(Enum):
ATTRIBUTE_KEY = constants.PARAMETER_CONSTANT_ATTRIBUTE_KEY
ACTIVITY_KEY = constants.PARAMETER_CONSTANT_ACTIVITY_KEY
START_TIMESTAMP_KEY = constants.PARAMETER_CONSTANT_START_TIMESTAMP_KEY
TIMESTAMP_KEY = constants.PARAMETER_CONSTANT_TIMESTAMP_KEY
CASE_ID_KEY = constants.PARAMETER_CONSTANT_CASEID_KEY
MAX_NO_POINTS_SAMPLE = "max_no_of_points_to_sample"
KEEP_ONCE_PER_CASE = "keep_once_per_case"
BUSINESS_HOURS = "business_hours"
BUSINESS_HOUR_SLOTS = "business_hour_slots"
WORKCALENDAR = "workcalendar"
[docs]
def apply(
df: pd.DataFrame,
activity: str,
parameters: Optional[Dict[Any, Any]] = None,
) -> Dict[str, Any]:
"""
Gets the time passed to each succeeding activity
Parameters
-------------
df
Dataframe
activity
Activity that we are considering
parameters
Possible parameters of the algorithm
Returns
-------------
dictio
Dictionary containing a 'post' key with the
list of aggregates times from the given activity to each succeeding activity
"""
if parameters is None:
parameters = {}
case_id_glue = exec_utils.get_param_value(
Parameters.CASE_ID_KEY, parameters, CASE_CONCEPT_NAME
)
activity_key = exec_utils.get_param_value(
Parameters.ACTIVITY_KEY, parameters, DEFAULT_NAME_KEY
)
timestamp_key = exec_utils.get_param_value(
Parameters.TIMESTAMP_KEY, parameters, DEFAULT_TIMESTAMP_KEY
)
start_timestamp_key = exec_utils.get_param_value(
Parameters.START_TIMESTAMP_KEY, parameters, None
)
business_hours = exec_utils.get_param_value(
Parameters.BUSINESS_HOURS, parameters, False
)
business_hours_slots = exec_utils.get_param_value(
Parameters.BUSINESS_HOUR_SLOTS,
parameters,
constants.DEFAULT_BUSINESS_HOUR_SLOTS,
)
workcalendar = exec_utils.get_param_value(
Parameters.WORKCALENDAR,
parameters,
constants.DEFAULT_BUSINESS_HOURS_WORKCALENDAR,
)
[dfg_frequency, dfg_performance] = pandas.get_dfg_graph(
df,
measure="both",
activity_key=activity_key,
case_id_glue=case_id_glue,
timestamp_key=timestamp_key,
start_timestamp_key=start_timestamp_key,
business_hours=business_hours,
business_hours_slot=business_hours_slots,
workcalendar=workcalendar,
)
post = []
sum_perf_post = 0.0
sum_acti_post = 0.0
for entry in dfg_performance.keys():
if entry[0] == activity:
post.append(
[
entry[1],
float(dfg_performance[entry]),
int(dfg_frequency[entry]),
]
)
sum_perf_post = sum_perf_post + float(
dfg_performance[entry]
) * float(dfg_frequency[entry])
sum_acti_post = sum_acti_post + float(dfg_frequency[entry])
perf_acti_post = 0.0
if sum_acti_post > 0:
perf_acti_post = sum_perf_post / sum_acti_post
return {"post": post, "post_avg_perf": perf_acti_post}