Source code for pm4py.statistics.passed_time.pandas.variants.pre

'''
    PM4Py – A Process Mining Library for Python
Copyright (C) 2024 Process Intelligence Solutions UG (haftungsbeschränkt)

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as
published by the Free Software Foundation, either version 3 of the
License, or any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU Affero General Public License for more details.

You should have received a copy of the GNU Affero General Public License
along with this program.  If not, see this software project's root or
visit <https://www.gnu.org/licenses/>.

Website: https://processintelligence.solutions
Contact: info@processintelligence.solutions
'''
from pm4py.util.xes_constants import DEFAULT_NAME_KEY, DEFAULT_TIMESTAMP_KEY
from pm4py.util.constants import CASE_CONCEPT_NAME
from pm4py.algo.discovery.dfg.adapters.pandas import df_statistics as pandas
from pm4py.util import exec_utils
from pm4py.util import constants
from enum import Enum
from typing import Optional, Dict, Any
import pandas as pd


[docs] class Parameters(Enum): ATTRIBUTE_KEY = constants.PARAMETER_CONSTANT_ATTRIBUTE_KEY ACTIVITY_KEY = constants.PARAMETER_CONSTANT_ACTIVITY_KEY START_TIMESTAMP_KEY = constants.PARAMETER_CONSTANT_START_TIMESTAMP_KEY TIMESTAMP_KEY = constants.PARAMETER_CONSTANT_TIMESTAMP_KEY CASE_ID_KEY = constants.PARAMETER_CONSTANT_CASEID_KEY MAX_NO_POINTS_SAMPLE = "max_no_of_points_to_sample" KEEP_ONCE_PER_CASE = "keep_once_per_case" BUSINESS_HOURS = "business_hours" BUSINESS_HOUR_SLOTS = "business_hour_slots" WORKCALENDAR = "workcalendar"
[docs] def apply( df: pd.DataFrame, activity: str, parameters: Optional[Dict[Any, Any]] = None, ) -> Dict[str, Any]: """ Gets the time passed from each preceding activity Parameters ------------- df Dataframe activity Activity that we are considering parameters Possible parameters of the algorithm Returns ------------- dictio Dictionary containing a 'pre' key with the list of aggregates times from each preceding activity to the given activity """ if parameters is None: parameters = {} case_id_glue = exec_utils.get_param_value( Parameters.CASE_ID_KEY, parameters, CASE_CONCEPT_NAME ) activity_key = exec_utils.get_param_value( Parameters.ACTIVITY_KEY, parameters, DEFAULT_NAME_KEY ) timestamp_key = exec_utils.get_param_value( Parameters.TIMESTAMP_KEY, parameters, DEFAULT_TIMESTAMP_KEY ) start_timestamp_key = exec_utils.get_param_value( Parameters.START_TIMESTAMP_KEY, parameters, None ) business_hours = exec_utils.get_param_value( Parameters.BUSINESS_HOURS, parameters, False ) business_hours_slots = exec_utils.get_param_value( Parameters.BUSINESS_HOUR_SLOTS, parameters, constants.DEFAULT_BUSINESS_HOUR_SLOTS, ) workcalendar = exec_utils.get_param_value( Parameters.WORKCALENDAR, parameters, constants.DEFAULT_BUSINESS_HOURS_WORKCALENDAR, ) [dfg_frequency, dfg_performance] = pandas.get_dfg_graph( df, measure="both", activity_key=activity_key, case_id_glue=case_id_glue, timestamp_key=timestamp_key, start_timestamp_key=start_timestamp_key, business_hours=business_hours, business_hours_slot=business_hours_slots, workcalendar=workcalendar, ) pre = [] sum_perf_pre = 0.0 sum_acti_pre = 0.0 for entry in dfg_performance.keys(): if entry[1] == activity: pre.append( [ entry[0], float(dfg_performance[entry]), int(dfg_frequency[entry]), ] ) sum_perf_pre = sum_perf_pre + float( dfg_performance[entry] ) * float(dfg_frequency[entry]) sum_acti_pre = sum_acti_pre + float(dfg_frequency[entry]) perf_acti_pre = 0.0 if sum_acti_pre > 0: perf_acti_pre = sum_perf_pre / sum_acti_pre return {"pre": pre, "pre_avg_perf": perf_acti_pre}