Source code for pm4py.statistics.rework.cases.pandas.get

'''
    PM4Py – A Process Mining Library for Python
Copyright (C) 2024 Process Intelligence Solutions UG (haftungsbeschränkt)

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as
published by the Free Software Foundation, either version 3 of the
License, or any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU Affero General Public License for more details.

You should have received a copy of the GNU Affero General Public License
along with this program.  If not, see this software project's root or
visit <https://www.gnu.org/licenses/>.

Website: https://processintelligence.solutions
Contact: info@processintelligence.solutions
'''
from enum import Enum
from typing import Optional, Dict, Any, Union

import pandas as pd
from pm4py.util import exec_utils, constants, xes_constants


[docs] class Parameters(Enum): ACTIVITY_KEY = constants.PARAMETER_CONSTANT_ACTIVITY_KEY CASE_ID_KEY = constants.PARAMETER_CONSTANT_CASEID_KEY
[docs] def apply( df: pd.DataFrame, parameters: Optional[Dict[Union[str, Parameters], Any]] = None, ) -> Dict[str, Dict[str, int]]: """ Computes for each trace of the event log how much rework occurs. The rework is computed as the difference between the total number of activities of a trace and the number of unique activities. Parameters ---------------- df Pandas dataframe parameters Parameters of the algorithm, including: - Parameters.ACTIVITY_KEY => the activity key - Parameters.CASE_ID_KEY => the case identifier attribute Returns ----------------- dict Dictionary associating to each case ID: - The number of total activities of the case (number of events) - The rework (difference between the total number of activities of a trace and the number of unique activities) """ if parameters is None: parameters = {} activity_key = exec_utils.get_param_value( Parameters.ACTIVITY_KEY, parameters, xes_constants.DEFAULT_NAME_KEY ) case_id_key = exec_utils.get_param_value( Parameters.CASE_ID_KEY, parameters, constants.CASE_CONCEPT_NAME ) grouped_df = ( df.groupby(case_id_key)[activity_key] .agg(["count", "nunique"]) .reset_index() .to_dict("records") ) rework_cases = {} for el in grouped_df: rework_cases[el["case:concept:name"]] = { "number_activities": el["count"], "rework": el["count"] - el["nunique"], } return rework_cases