Source code for pm4py.statistics.rework.cases.pandas.get
'''
PM4Py – A Process Mining Library for Python
Copyright (C) 2024 Process Intelligence Solutions UG (haftungsbeschränkt)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as
published by the Free Software Foundation, either version 3 of the
License, or any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public License
along with this program. If not, see this software project's root or
visit <https://www.gnu.org/licenses/>.
Website: https://processintelligence.solutions
Contact: info@processintelligence.solutions
'''
from enum import Enum
from typing import Optional, Dict, Any, Union
import pandas as pd
from pm4py.util import exec_utils, constants, xes_constants
[docs]
class Parameters(Enum):
ACTIVITY_KEY = constants.PARAMETER_CONSTANT_ACTIVITY_KEY
CASE_ID_KEY = constants.PARAMETER_CONSTANT_CASEID_KEY
[docs]
def apply(
df: pd.DataFrame,
parameters: Optional[Dict[Union[str, Parameters], Any]] = None,
) -> Dict[str, Dict[str, int]]:
"""
Computes for each trace of the event log how much rework occurs.
The rework is computed as the difference between the total number of activities of a trace and the
number of unique activities.
Parameters
----------------
df
Pandas dataframe
parameters
Parameters of the algorithm, including:
- Parameters.ACTIVITY_KEY => the activity key
- Parameters.CASE_ID_KEY => the case identifier attribute
Returns
-----------------
dict
Dictionary associating to each case ID:
- The number of total activities of the case (number of events)
- The rework (difference between the total number of activities of a trace and the number of unique activities)
"""
if parameters is None:
parameters = {}
activity_key = exec_utils.get_param_value(
Parameters.ACTIVITY_KEY, parameters, xes_constants.DEFAULT_NAME_KEY
)
case_id_key = exec_utils.get_param_value(
Parameters.CASE_ID_KEY, parameters, constants.CASE_CONCEPT_NAME
)
grouped_df = (
df.groupby(case_id_key)[activity_key]
.agg(["count", "nunique"])
.reset_index()
.to_dict("records")
)
rework_cases = {}
for el in grouped_df:
rework_cases[el["case:concept:name"]] = {
"number_activities": el["count"],
"rework": el["count"] - el["nunique"],
}
return rework_cases