Source code for pm4py.statistics.rework.pandas.get
'''
PM4Py – A Process Mining Library for Python
Copyright (C) 2024 Process Intelligence Solutions UG (haftungsbeschränkt)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as
published by the Free Software Foundation, either version 3 of the
License, or any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public License
along with this program. If not, see this software project's root or
visit <https://www.gnu.org/licenses/>.
Website: https://processintelligence.solutions
Contact: info@processintelligence.solutions
'''
from enum import Enum
from typing import Optional, Dict, Any, Union
import pandas as pd
from pm4py.util import constants, xes_constants, exec_utils
[docs]
class Parameters(Enum):
ACTIVITY_KEY = constants.PARAMETER_CONSTANT_ACTIVITY_KEY
CASE_ID_KEY = constants.PARAMETER_CONSTANT_CASEID_KEY
INT_CASE_ACT_SIZE = "@@int_case_act_size"
[docs]
def apply(
df: pd.DataFrame,
parameters: Optional[Dict[Union[str, Parameters], Any]] = None,
) -> Dict[str, int]:
"""
Associates to each activity (with at least one rework) the number of cases in the log for which
the rework happened.
Parameters
------------------
df
Dataframe
parameters
Parameters of the algorithm, including:
- Parameters.ACTIVITY_KEY => the attribute to be used as activity
- Parameters.CASE_ID_KEY => the attribute to be used as case ID
Returns
------------------
dict
Dictionary associating to each activity the number of cases for which the rework happened
"""
if parameters is None:
parameters = {}
activity_key = exec_utils.get_param_value(
Parameters.ACTIVITY_KEY, parameters, xes_constants.DEFAULT_NAME_KEY
)
case_id_key = exec_utils.get_param_value(
Parameters.CASE_ID_KEY, parameters, constants.CASE_CONCEPT_NAME
)
df = df.copy()
df = df[list({activity_key, case_id_key})]
df[INT_CASE_ACT_SIZE] = df.groupby([activity_key, case_id_key]).cumcount()
df = df[df[INT_CASE_ACT_SIZE] > 0]
df = df.groupby([activity_key, case_id_key]).last()
ret = df.groupby(activity_key).size().to_dict()
return ret