Source code for pm4py.statistics.rework.pandas.get

'''
    PM4Py – A Process Mining Library for Python
Copyright (C) 2024 Process Intelligence Solutions UG (haftungsbeschränkt)

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as
published by the Free Software Foundation, either version 3 of the
License, or any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU Affero General Public License for more details.

You should have received a copy of the GNU Affero General Public License
along with this program.  If not, see this software project's root or
visit <https://www.gnu.org/licenses/>.

Website: https://processintelligence.solutions
Contact: info@processintelligence.solutions
'''
from enum import Enum
from typing import Optional, Dict, Any, Union

import pandas as pd

from pm4py.util import constants, xes_constants, exec_utils


[docs] class Parameters(Enum): ACTIVITY_KEY = constants.PARAMETER_CONSTANT_ACTIVITY_KEY CASE_ID_KEY = constants.PARAMETER_CONSTANT_CASEID_KEY
INT_CASE_ACT_SIZE = "@@int_case_act_size"
[docs] def apply( df: pd.DataFrame, parameters: Optional[Dict[Union[str, Parameters], Any]] = None, ) -> Dict[str, int]: """ Associates to each activity (with at least one rework) the number of cases in the log for which the rework happened. Parameters ------------------ df Dataframe parameters Parameters of the algorithm, including: - Parameters.ACTIVITY_KEY => the attribute to be used as activity - Parameters.CASE_ID_KEY => the attribute to be used as case ID Returns ------------------ dict Dictionary associating to each activity the number of cases for which the rework happened """ if parameters is None: parameters = {} activity_key = exec_utils.get_param_value( Parameters.ACTIVITY_KEY, parameters, xes_constants.DEFAULT_NAME_KEY ) case_id_key = exec_utils.get_param_value( Parameters.CASE_ID_KEY, parameters, constants.CASE_CONCEPT_NAME ) df = df.copy() df = df[list({activity_key, case_id_key})] df[INT_CASE_ACT_SIZE] = df.groupby([activity_key, case_id_key]).cumcount() df = df[df[INT_CASE_ACT_SIZE] > 0] df = df.groupby([activity_key, case_id_key]).last() ret = df.groupby(activity_key).size().to_dict() return ret