Source code for pm4py.statistics.traces.generic.pandas.case_arrival
'''
PM4Py – A Process Mining Library for Python
Copyright (C) 2024 Process Intelligence Solutions UG (haftungsbeschränkt)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as
published by the Free Software Foundation, either version 3 of the
License, or any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public License
along with this program. If not, see this software project's root or
visit <https://www.gnu.org/licenses/>.
Website: https://processintelligence.solutions
Contact: info@processintelligence.solutions
'''
import pandas as pd
from pm4py.util.xes_constants import DEFAULT_TIMESTAMP_KEY
from pm4py.util.constants import CASE_CONCEPT_NAME
from pm4py.util import exec_utils
from pm4py.util import constants, pandas_utils
from enum import Enum
from typing import Optional, Dict, Any, Union
[docs]
class Parameters(Enum):
ATTRIBUTE_KEY = constants.PARAMETER_CONSTANT_ATTRIBUTE_KEY
ACTIVITY_KEY = constants.PARAMETER_CONSTANT_ACTIVITY_KEY
START_TIMESTAMP_KEY = constants.PARAMETER_CONSTANT_START_TIMESTAMP_KEY
TIMESTAMP_KEY = constants.PARAMETER_CONSTANT_TIMESTAMP_KEY
CASE_ID_KEY = constants.PARAMETER_CONSTANT_CASEID_KEY
MAX_NO_POINTS_SAMPLE = "max_no_of_points_to_sample"
KEEP_ONCE_PER_CASE = "keep_once_per_case"
[docs]
def get_case_arrival_avg(
df: pd.DataFrame,
parameters: Optional[Dict[Union[str, Parameters], Any]] = None,
) -> float:
"""
Gets the average time interlapsed between case starts
Parameters
--------------
df
Pandas dataframe
parameters
Parameters of the algorithm, including:
Parameters.TIMESTAMP_KEY -> attribute of the log to be used as timestamp
Returns
--------------
case_arrival_avg
Average time interlapsed between case starts
"""
if parameters is None:
parameters = {}
caseid_glue = exec_utils.get_param_value(
Parameters.CASE_ID_KEY, parameters, CASE_CONCEPT_NAME
)
timest_key = exec_utils.get_param_value(
Parameters.TIMESTAMP_KEY, parameters, DEFAULT_TIMESTAMP_KEY
)
first_df = df.groupby(caseid_glue).first()
first_df = first_df.sort_values(timest_key)
first_df_shift = first_df.shift(-1)
first_df_shift.columns = [
str(col) + "_2" for col in first_df_shift.columns
]
df_successive_rows = pandas_utils.concat(
[first_df, first_df_shift], axis=1
)
df_successive_rows["interlapsed_time"] = pandas_utils.get_total_seconds(
df_successive_rows[timest_key + "_2"] - df_successive_rows[timest_key]
)
df_successive_rows = df_successive_rows.dropna(subset=["interlapsed_time"])
return df_successive_rows["interlapsed_time"].mean()
[docs]
def get_case_dispersion_avg(df, parameters=None):
"""
Gets the average time interlapsed between case ends
Parameters
--------------
df
Pandas dataframe
parameters
Parameters of the algorithm, including:
Parameters.TIMESTAMP_KEY -> attribute of the log to be used as timestamp
Returns
--------------
case_dispersion_avg
Average time interlapsed between the completion of cases
"""
if parameters is None:
parameters = {}
caseid_glue = exec_utils.get_param_value(
Parameters.CASE_ID_KEY, parameters, CASE_CONCEPT_NAME
)
timest_key = exec_utils.get_param_value(
Parameters.TIMESTAMP_KEY, parameters, DEFAULT_TIMESTAMP_KEY
)
first_df = df.groupby(caseid_glue).last()
first_df = first_df.sort_values(timest_key)
first_df_shift = first_df.shift(-1)
first_df_shift.columns = [
str(col) + "_2" for col in first_df_shift.columns
]
df_successive_rows = pandas_utils.concat(
[first_df, first_df_shift], axis=1
)
df_successive_rows["interlapsed_time"] = pandas_utils.get_total_seconds(
df_successive_rows[timest_key + "_2"] - df_successive_rows[timest_key]
)
df_successive_rows = df_successive_rows.dropna(subset=["interlapsed_time"])
return df_successive_rows["interlapsed_time"].mean()