Source code for pm4py.statistics.traces.generic.pandas.case_arrival

'''
    PM4Py – A Process Mining Library for Python
Copyright (C) 2024 Process Intelligence Solutions UG (haftungsbeschränkt)

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as
published by the Free Software Foundation, either version 3 of the
License, or any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU Affero General Public License for more details.

You should have received a copy of the GNU Affero General Public License
along with this program.  If not, see this software project's root or
visit <https://www.gnu.org/licenses/>.

Website: https://processintelligence.solutions
Contact: info@processintelligence.solutions
'''
import pandas as pd

from pm4py.util.xes_constants import DEFAULT_TIMESTAMP_KEY
from pm4py.util.constants import CASE_CONCEPT_NAME
from pm4py.util import exec_utils
from pm4py.util import constants, pandas_utils
from enum import Enum
from typing import Optional, Dict, Any, Union


[docs] class Parameters(Enum): ATTRIBUTE_KEY = constants.PARAMETER_CONSTANT_ATTRIBUTE_KEY ACTIVITY_KEY = constants.PARAMETER_CONSTANT_ACTIVITY_KEY START_TIMESTAMP_KEY = constants.PARAMETER_CONSTANT_START_TIMESTAMP_KEY TIMESTAMP_KEY = constants.PARAMETER_CONSTANT_TIMESTAMP_KEY CASE_ID_KEY = constants.PARAMETER_CONSTANT_CASEID_KEY MAX_NO_POINTS_SAMPLE = "max_no_of_points_to_sample" KEEP_ONCE_PER_CASE = "keep_once_per_case"
[docs] def get_case_arrival_avg( df: pd.DataFrame, parameters: Optional[Dict[Union[str, Parameters], Any]] = None, ) -> float: """ Gets the average time interlapsed between case starts Parameters -------------- df Pandas dataframe parameters Parameters of the algorithm, including: Parameters.TIMESTAMP_KEY -> attribute of the log to be used as timestamp Returns -------------- case_arrival_avg Average time interlapsed between case starts """ if parameters is None: parameters = {} caseid_glue = exec_utils.get_param_value( Parameters.CASE_ID_KEY, parameters, CASE_CONCEPT_NAME ) timest_key = exec_utils.get_param_value( Parameters.TIMESTAMP_KEY, parameters, DEFAULT_TIMESTAMP_KEY ) first_df = df.groupby(caseid_glue).first() first_df = first_df.sort_values(timest_key) first_df_shift = first_df.shift(-1) first_df_shift.columns = [ str(col) + "_2" for col in first_df_shift.columns ] df_successive_rows = pandas_utils.concat( [first_df, first_df_shift], axis=1 ) df_successive_rows["interlapsed_time"] = pandas_utils.get_total_seconds( df_successive_rows[timest_key + "_2"] - df_successive_rows[timest_key] ) df_successive_rows = df_successive_rows.dropna(subset=["interlapsed_time"]) return df_successive_rows["interlapsed_time"].mean()
[docs] def get_case_dispersion_avg(df, parameters=None): """ Gets the average time interlapsed between case ends Parameters -------------- df Pandas dataframe parameters Parameters of the algorithm, including: Parameters.TIMESTAMP_KEY -> attribute of the log to be used as timestamp Returns -------------- case_dispersion_avg Average time interlapsed between the completion of cases """ if parameters is None: parameters = {} caseid_glue = exec_utils.get_param_value( Parameters.CASE_ID_KEY, parameters, CASE_CONCEPT_NAME ) timest_key = exec_utils.get_param_value( Parameters.TIMESTAMP_KEY, parameters, DEFAULT_TIMESTAMP_KEY ) first_df = df.groupby(caseid_glue).last() first_df = first_df.sort_values(timest_key) first_df_shift = first_df.shift(-1) first_df_shift.columns = [ str(col) + "_2" for col in first_df_shift.columns ] df_successive_rows = pandas_utils.concat( [first_df, first_df_shift], axis=1 ) df_successive_rows["interlapsed_time"] = pandas_utils.get_total_seconds( df_successive_rows[timest_key + "_2"] - df_successive_rows[timest_key] ) df_successive_rows = df_successive_rows.dropna(subset=["interlapsed_time"]) return df_successive_rows["interlapsed_time"].mean()