Source code for pm4py.statistics.variants.pandas.get

'''
    PM4Py – A Process Mining Library for Python
Copyright (C) 2024 Process Intelligence Solutions UG (haftungsbeschränkt)

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as
published by the Free Software Foundation, either version 3 of the
License, or any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU Affero General Public License for more details.

You should have received a copy of the GNU Affero General Public License
along with this program.  If not, see this software project's root or
visit <https://www.gnu.org/licenses/>.

Website: https://processintelligence.solutions
Contact: info@processintelligence.solutions
'''
from typing import Optional, Dict, Any, Union, List, Set

import pandas as pd

from pm4py.objects.log.util import pandas_numpy_variants


[docs] def get_variants_count( df: pd.DataFrame, parameters: Optional[Dict[Any, Any]] = None ) -> Union[Dict[str, int], Dict[List[str], int]]: """ Gets the dictionary of variants from the current dataframe Parameters -------------- df Dataframe parameters Possible parameters of the algorithm, including: Parameters.ACTIVITY_KEY -> Column that contains the activity Returns -------------- variants_set Dictionary of variants in the log """ if parameters is None: parameters = {} variants_counter, case_variant = pandas_numpy_variants.apply( df, parameters=parameters ) return variants_counter
[docs] def get_variants_set( df: pd.DataFrame, parameters: Optional[Dict[Any, Any]] = None ) -> Union[Set[str], Set[List[str]]]: """ Gets the set of variants from the current dataframe Parameters -------------- df Dataframe parameters Possible parameters of the algorithm, including: Parameters.ACTIVITY_KEY -> Column that contains the activity Returns -------------- variants_set Set of variants in the log """ if parameters is None: parameters = {} variants_dict = get_variants_count(df, parameters=parameters) return set(variants_dict.keys())