Source code for pm4py.statistics.variants.pandas.get
'''
PM4Py – A Process Mining Library for Python
Copyright (C) 2024 Process Intelligence Solutions UG (haftungsbeschränkt)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as
published by the Free Software Foundation, either version 3 of the
License, or any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public License
along with this program. If not, see this software project's root or
visit <https://www.gnu.org/licenses/>.
Website: https://processintelligence.solutions
Contact: info@processintelligence.solutions
'''
from typing import Optional, Dict, Any, Union, List, Set
import pandas as pd
from pm4py.objects.log.util import pandas_numpy_variants
[docs]
def get_variants_count(
df: pd.DataFrame, parameters: Optional[Dict[Any, Any]] = None
) -> Union[Dict[str, int], Dict[List[str], int]]:
"""
Gets the dictionary of variants from the current dataframe
Parameters
--------------
df
Dataframe
parameters
Possible parameters of the algorithm, including:
Parameters.ACTIVITY_KEY -> Column that contains the activity
Returns
--------------
variants_set
Dictionary of variants in the log
"""
if parameters is None:
parameters = {}
variants_counter, case_variant = pandas_numpy_variants.apply(
df, parameters=parameters
)
return variants_counter
[docs]
def get_variants_set(
df: pd.DataFrame, parameters: Optional[Dict[Any, Any]] = None
) -> Union[Set[str], Set[List[str]]]:
"""
Gets the set of variants from the current dataframe
Parameters
--------------
df
Dataframe
parameters
Possible parameters of the algorithm, including:
Parameters.ACTIVITY_KEY -> Column that contains the activity
Returns
--------------
variants_set
Set of variants in the log
"""
if parameters is None:
parameters = {}
variants_dict = get_variants_count(df, parameters=parameters)
return set(variants_dict.keys())