Source code for pm4py.util.lp.variants.cvxopt_solver
'''
PM4Py – A Process Mining Library for Python
Copyright (C) 2024 Process Intelligence Solutions UG (haftungsbeschränkt)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as
published by the Free Software Foundation, either version 3 of the
License, or any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public License
along with this program. If not, see this software project's root or
visit <https://www.gnu.org/licenses/>.
Website: https://processintelligence.solutions
Contact: info@processintelligence.solutions
'''
import sys
from cvxopt import matrix, solvers
[docs]
def apply(c, Aub, bub, Aeq, beq, parameters=None):
"""
Gets the overall solution of the problem
Parameters
------------
c
c parameter of the algorithm
Aub
A_ub parameter of the algorithm
bub
b_ub parameter of the algorithm
Aeq
A_eq parameter of the algorithm
beq
b_eq parameter of the algorithm
parameters
Possible parameters of the algorithm
Returns
-------------
sol
Solution of the LP problem by the given algorithm
"""
if parameters is None:
parameters = {}
solver = parameters["solver"] if "solver" in parameters else None
c = matrix(c)
Aub = matrix(Aub)
bub = matrix(bub)
if Aeq is not None:
Aeq = matrix(Aeq)
if beq is not None:
beq = matrix(beq)
solvers.options['glpk'] = {}
solvers.options['glpk']['LPX_K_MSGLEV'] = 0
solvers.options['glpk']['msg_lev'] = 'GLP_MSG_OFF'
solvers.options['glpk']['show_progress'] = False
solvers.options['glpk']['presolve'] = "GLP_ON"
solvers.options['glpk']['meth'] = "GLP_PRIMAL"
solvers.options['msg_lev'] = 'GLP_MSG_OFF'
solvers.options['show_progress'] = False
if solver:
sol = solvers.lp(c, Aub, bub, A=Aeq, b=beq, solver=solver)
else:
sol = solvers.lp(c, Aub, bub, A=Aeq, b=beq)
return sol
[docs]
def get_prim_obj_from_sol(sol, parameters=None):
"""
Gets the primal objective from the solution of the LP problem
Parameters
-------------
sol
Solution of the ILP problem by the given algorithm
parameters
Possible parameters of the algorithm
Returns
-------------
prim_obj
Primal objective
"""
if parameters is None:
parameters = {}
return sol["primal objective"]
[docs]
def get_points_from_sol(sol, parameters=None):
"""
Gets the points from the solution
Parameters
-------------
sol
Solution of the LP problem by the given algorithm
parameters
Possible parameters of the algorithm
Returns
-------------
points
Point of the solution
"""
if parameters is None:
parameters = {}
maximize = parameters["maximize"] if "maximize" in parameters else False
return_when_none = parameters["return_when_none"] if "return_when_none" in parameters else False
var_corr = parameters["var_corr"] if "var_corr" in parameters else {}
if sol and 'x' in sol and sol['x'] is not None:
return list(sol['x'])
else:
if return_when_none:
if maximize:
return [sys.float_info.max] * len(list(var_corr.keys()))
return [sys.float_info.min] * len(list(var_corr.keys()))