Source code for pm4py.util.lp.variants.cvxopt_solver_custom_align
'''
PM4Py – A Process Mining Library for Python
Copyright (C) 2024 Process Intelligence Solutions UG (haftungsbeschränkt)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as
published by the Free Software Foundation, either version 3 of the
License, or any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public License
along with this program. If not, see this software project's root or
visit <https://www.gnu.org/licenses/>.
Website: https://processintelligence.solutions
Contact: info@processintelligence.solutions
'''
import sys
from cvxopt import blas
from cvxopt import glpk
this_options = {}
this_options["LPX_K_MSGLEV"] = 0
this_options["msg_lev"] = "GLP_MSG_OFF"
this_options["show_progress"] = False
this_options["presolve"] = "GLP_ON"
this_options["tol_bnd"] = 10**-5
this_options["tol_piv"] = 10**-5
this_options["obj_ll"] = 10**-5
this_options["obj_ul"] = 10**-5
this_options["obj_ul"] = 10**-5
[docs]
def custom_solve_lp(c, G, h, A, b):
status, x, z, y = glpk.lp(c, G, h, A, b, options=this_options)
if status == 'optimal':
pcost = blas.dot(c, x)
else:
pcost = None
return {'status': status, 'x': x, 'primal objective': pcost}
[docs]
def apply(c, Aub, bub, Aeq, beq, parameters=None):
"""
Gets the overall solution of the problem
Parameters
------------
c
c parameter of the algorithm
Aub
A_ub parameter of the algorithm
bub
b_ub parameter of the algorithm
Aeq
A_eq parameter of the algorithm
beq
b_eq parameter of the algorithm
parameters
Possible parameters of the algorithm
Returns
-------------
sol
Solution of the LP problem by the given algorithm
"""
sol = custom_solve_lp(c, Aub, bub, Aeq, beq)
return sol
[docs]
def get_prim_obj_from_sol(sol, parameters=None):
"""
Gets the primal objective from the solution of the LP problem
Parameters
-------------
sol
Solution of the ILP problem by the given algorithm
parameters
Possible parameters of the algorithm
Returns
-------------
prim_obj
Primal objective
"""
return sol["primal objective"]
[docs]
def get_points_from_sol(sol, parameters=None):
"""
Gets the points from the solution
Parameters
-------------
sol
Solution of the LP problem by the given algorithm
parameters
Possible parameters of the algorithm
Returns
-------------
points
Point of the solution
"""
if parameters is None:
parameters = {}
maximize = parameters["maximize"] if "maximize" in parameters else False
return_when_none = parameters["return_when_none"] if "return_when_none" in parameters else False
var_corr = parameters["var_corr"] if "var_corr" in parameters else {}
if sol and 'x' in sol and sol['x'] is not None:
return list(sol['x'])
else:
if return_when_none:
if maximize:
return [sys.float_info.max] * len(list(var_corr.keys()))
return [sys.float_info.min] * len(list(var_corr.keys()))