Source code for pm4py.visualization.dfg.variants.cost

'''
    PM4Py – A Process Mining Library for Python
Copyright (C) 2024 Process Intelligence Solutions UG (haftungsbeschränkt)

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as
published by the Free Software Foundation, either version 3 of the
License, or any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU Affero General Public License for more details.

You should have received a copy of the GNU Affero General Public License
along with this program.  If not, see this software project's root or
visit <https://www.gnu.org/licenses/>.

Website: https://processintelligence.solutions
Contact: info@processintelligence.solutions
'''
from pm4py.statistics.attributes.log import get as attr_get
from pm4py.objects.dfg.utils import dfg_utils
from pm4py.util import xes_constants as xes
from pm4py.util import exec_utils
from pm4py.statistics.service_time.log import get as serv_time_get
from enum import Enum
from pm4py.util import constants

from typing import Optional, Dict, Any, Tuple
import graphviz
from pm4py.objects.log.obj import EventLog
from collections import Counter
from pm4py.visualization.dfg.util import dfg_gviz


[docs] class Parameters(Enum): ACTIVITY_KEY = constants.PARAMETER_CONSTANT_ACTIVITY_KEY FORMAT = "format" MAX_NO_EDGES_IN_DIAGRAM = "maxNoOfEdgesInDiagram" START_ACTIVITIES = "start_activities" END_ACTIVITIES = "end_activities" TIMESTAMP_KEY = constants.PARAMETER_CONSTANT_TIMESTAMP_KEY START_TIMESTAMP_KEY = constants.PARAMETER_CONSTANT_START_TIMESTAMP_KEY FONT_SIZE = "font_size" AGGREGATION_MEASURE = "aggregation_measure" RANKDIR = "rankdir" BGCOLOR = "bgcolor" ENABLE_GRAPH_TITLE = "enable_graph_title" GRAPH_TITLE = "graph_title"
[docs] def apply( dfg: Dict[Tuple[str, str], int], log: EventLog = None, parameters: Optional[Dict[Any, Any]] = None, activities_count: Dict[str, int] = None, serv_time: Dict[str, float] = None, ) -> graphviz.Digraph: """ Visualize a cost-based directly-follows graph Parameters ----------------- dfg Performance Directly-follows graph log (if provided) Event log for the calculation of statistics activities_count (if provided) Dictionary associating to each activity the number of occurrences in the log. serv_time (if provided) Dictionary associating to each activity the average service time parameters Variant-specific parameters Returns ----------------- gviz Graphviz digraph """ if parameters is None: parameters = {} activity_key = exec_utils.get_param_value( Parameters.ACTIVITY_KEY, parameters, xes.DEFAULT_NAME_KEY ) image_format = exec_utils.get_param_value( Parameters.FORMAT, parameters, "png" ) max_no_of_edges_in_diagram = exec_utils.get_param_value( Parameters.MAX_NO_EDGES_IN_DIAGRAM, parameters, 100000 ) start_activities = exec_utils.get_param_value( Parameters.START_ACTIVITIES, parameters, [] ) end_activities = exec_utils.get_param_value( Parameters.END_ACTIVITIES, parameters, [] ) font_size = exec_utils.get_param_value( Parameters.FONT_SIZE, parameters, 12 ) font_size = str(font_size) activities = dfg_utils.get_activities_from_dfg(dfg) aggregation_measure = exec_utils.get_param_value( Parameters.AGGREGATION_MEASURE, parameters, "mean" ) rankdir = exec_utils.get_param_value( Parameters.RANKDIR, parameters, constants.DEFAULT_RANKDIR_GVIZ ) bgcolor = exec_utils.get_param_value( Parameters.BGCOLOR, parameters, constants.DEFAULT_BGCOLOR ) enable_graph_title = exec_utils.get_param_value( Parameters.ENABLE_GRAPH_TITLE, parameters, constants.DEFAULT_ENABLE_GRAPH_TITLES, ) graph_title = exec_utils.get_param_value( Parameters.GRAPH_TITLE, parameters, "Cost-Based Directly-Follows Graph" ) # if all the aggregation measures are provided for a given key, # then pick one of the values for the representation dfg0 = dfg dfg = {} for key in dfg0: try: if aggregation_measure in dfg0[key]: dfg[key] = dfg0[key][aggregation_measure] else: dfg[key] = dfg0[key] except BaseException: dfg[key] = dfg0[key] if activities_count is None: if log is not None: activities_count = attr_get.get_attribute_values( log, activity_key, parameters=parameters ) else: # the frequency of an activity in the log is at least the number of occurrences of # incoming arcs in the DFG. # if the frequency of the start activities nodes is also provided, # use also that. activities_count = Counter({key: 0 for key in activities}) for el in dfg: activities_count[el[1]] += dfg[el] if isinstance(start_activities, dict): for act in start_activities: activities_count[act] += start_activities[act] if serv_time is None: if log is not None: serv_time = serv_time_get.apply(log, parameters=parameters) else: serv_time = {key: -1 for key in activities} return dfg_gviz.graphviz_visualization( activities_count, dfg, image_format=image_format, measure="cost", max_no_of_edges_in_diagram=max_no_of_edges_in_diagram, start_activities=start_activities, end_activities=end_activities, serv_time=serv_time, font_size=font_size, bgcolor=bgcolor, rankdir=rankdir, enable_graph_title=enable_graph_title, graph_title=graph_title, )