Source code for pm4py.visualization.performance_spectrum.variants.neato

'''
    PM4Py – A Process Mining Library for Python
Copyright (C) 2024 Process Intelligence Solutions UG (haftungsbeschränkt)

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as
published by the Free Software Foundation, either version 3 of the
License, or any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU Affero General Public License for more details.

You should have received a copy of the GNU Affero General Public License
along with this program.  If not, see this software project's root or
visit <https://www.gnu.org/licenses/>.

Website: https://processintelligence.solutions
Contact: info@processintelligence.solutions
'''
import math
import os
import tempfile
import uuid
from datetime import datetime
from enum import Enum
from typing import Optional, Dict, Any, Union

import matplotlib as mpl
import matplotlib.cm as cm

from pm4py.util import exec_utils, constants
from pm4py.util.dt_parsing.variants import strpfromiso
from pm4py.util.colors import get_string_from_int_below_255


[docs] class Parameters(Enum): FORMAT = "format" ACT_DIVIDER_SPACE = "act_divider_space" DATE_DIVIDER_SPACE = "date_divider_space" OVERALL_LENGTH_X = "overall_length_x" N_DIV_DATES = "n_div_dates" PERC_PATHS = "perc_paths" LAYOUT_EXT_MULTIPLIER = "layout_ext_multiplier" ENABLE_GRAPH_TITLE = "enable_graph_title" GRAPH_TITLE = "graph_title"
[docs] def give_color_to_line(dir: float) -> str: """ Gives a gradient color to the line Parameters ---------------- dir Intensity of the difference (number between 0 and 1; 0=min difference, 1=max difference) Returns ---------------- color Gradient color """ dir = 0.5 + 0.5 * dir norm = mpl.colors.Normalize(vmin=0, vmax=1) nodes = [0.0, 0.01, 0.25, 0.4, 0.45, 0.55, 0.75, 0.99, 1.0] colors = [ "deepskyblue", "skyblue", "lightcyan", "lightgray", "gray", "lightgray", "mistyrose", "salmon", "tomato", ] cmap = mpl.colors.LinearSegmentedColormap.from_list( "mycmap2", list(zip(nodes, colors)) ) # cmap = cm.plasma m = cm.ScalarMappable(norm=norm, cmap=cmap) rgba = m.to_rgba(dir) r = get_string_from_int_below_255(math.ceil(rgba[0] * 255.0)) g = get_string_from_int_below_255(math.ceil(rgba[1] * 255.0)) b = get_string_from_int_below_255(math.ceil(rgba[2] * 255.0)) return "#" + r + g + b
[docs] def apply( perf_spectrum: Dict[str, Any], parameters: Optional[Dict[Union[str, Parameters], Any]] = None, ) -> str: """ Construct the performance spectrum visualization Parameters ---------------- perf_spectrum Performance spectrum parameters Parameters of the algorithm, including: - Parameters.FORMAT => format of the output (svg, png, ...) - Parameters.ACT_DIVIDER_SPACE => space between the activities in the spectrum - Parameters.DATE_DIVIDER_SPACE => space between the lines and the dates - Parmaeters.OVERALL_LENGTH_X => length of the X-line - Parameters.N_DIV_DATES => specifies the number of intermediate dates reported - Parameters.PERC_PATHS => (if provided) filter the (overall) most long paths Returns --------------- file_path Path containing the visualization """ if parameters is None: parameters = {} format = exec_utils.get_param_value(Parameters.FORMAT, parameters, "png") act_divider = exec_utils.get_param_value( Parameters.ACT_DIVIDER_SPACE, parameters, 3.0 ) date_divider = exec_utils.get_param_value( Parameters.DATE_DIVIDER_SPACE, parameters, 1.0 ) overall_length = exec_utils.get_param_value( Parameters.OVERALL_LENGTH_X, parameters, 10.0 ) n_div = exec_utils.get_param_value(Parameters.N_DIV_DATES, parameters, 2) perc_paths = exec_utils.get_param_value( Parameters.PERC_PATHS, parameters, 1.0 ) layout_ext_multiplier = exec_utils.get_param_value( Parameters.LAYOUT_EXT_MULTIPLIER, parameters, 100 ) enable_graph_title = exec_utils.get_param_value( Parameters.ENABLE_GRAPH_TITLE, parameters, constants.DEFAULT_ENABLE_GRAPH_TITLES, ) graph_title = exec_utils.get_param_value( Parameters.GRAPH_TITLE, parameters, "Performance Spectrum" ) output_file_gv = tempfile.NamedTemporaryFile(suffix=".gv") output_file_gv.close() output_file_img = tempfile.NamedTemporaryFile(suffix="." + format) output_file_img.close() lines = [] lines.append("graph G {") if enable_graph_title: lines.append( 'label=<<FONT POINT-SIZE="20">' + graph_title + '</FONT>>;\nlabelloc="top";\n' ) min_x = min(x[0] for x in perf_spectrum["points"]) max_x = max(x[-1] for x in perf_spectrum["points"]) all_diffs = [ x[i + 1] - x[i] for x in perf_spectrum["points"] for i in range(len(x) - 1) ] min_diff = min(all_diffs) max_diff = max(all_diffs) points = sorted( perf_spectrum["points"], key=lambda x: x[-1] - x[0], reverse=True ) points = points[: math.ceil(perc_paths * len(points))] for polyline in points: this_pts = [] for i, p in enumerate(polyline): p_id = "n" + str(uuid.uuid4()).replace("-", "") + "e" first_coord = (p - min_x) / (max_x - min_x) * overall_length second_coord = act_divider * ( len(perf_spectrum["list_activities"]) - i - 1 ) lines.append( '%s [label="", pos="%.10f,%.10f!", shape=none, width="0px", height="0px"];' % (p_id, first_coord * layout_ext_multiplier, second_coord * layout_ext_multiplier, )) this_pts.append(p_id) for i in range(len(this_pts) - 1): diff = polyline[i + 1] - polyline[i] color = give_color_to_line( (diff - min_diff) / (max_diff - min_diff) ) lines.append( '%s -- %s [ color="%s" ];' % (this_pts[i], this_pts[i + 1], color) ) for i, act in enumerate(perf_spectrum["list_activities"]): second_coord = act_divider * ( len(perf_spectrum["list_activities"]) - i - 1 ) a_id = "n" + str(uuid.uuid4()).replace("-", "") + "e" lines.append( '%s [label="%s", pos="%.10f,%.10f!", shape=none, width="0px", height="0px"];' % (a_id, act, overall_length * layout_ext_multiplier, second_coord * layout_ext_multiplier, )) s_id = "n" + str(uuid.uuid4()).replace("-", "") + "e" lines.append( '%s [label="", pos="0,%.10f!", shape=none, width="0px", height="0px"];' % (s_id, second_coord * layout_ext_multiplier)) lines.append('%s -- %s [ color="black" ];' % (s_id, a_id)) if i == len(perf_spectrum["list_activities"]) - 1: for j in range(n_div + 1): pos = float(j * overall_length) / float(n_div) tst = min_x + float(j) / float(n_div) * (max_x - min_x) dt = strpfromiso.fix_naivety(datetime.fromtimestamp(tst)) n_id = "n" + str(uuid.uuid4()).replace("-", "") + "e" lines.append( '%s [label="%s", pos="%.10f,%.10f!", shape=none, width="0px", height="0px"];' % (n_id, str(dt), pos * layout_ext_multiplier, (second_coord - date_divider) * layout_ext_multiplier, )) lines.append("}") lines = "\n".join(lines) F = open(output_file_gv.name, "w") F.write(lines) F.close() os.system( "neato -n1 -T" + format + " " + output_file_gv.name + " > " + output_file_img.name ) return output_file_img.name