Source code for pm4py.visualization.petri_net.visualizer

'''
    PM4Py – A Process Mining Library for Python
Copyright (C) 2024 Process Intelligence Solutions UG (haftungsbeschränkt)

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as
published by the Free Software Foundation, either version 3 of the
License, or any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU Affero General Public License for more details.

You should have received a copy of the GNU Affero General Public License
along with this program.  If not, see this software project's root or
visit <https://www.gnu.org/licenses/>.

Website: https://processintelligence.solutions
Contact: info@processintelligence.solutions
'''
from pm4py.objects.conversion.log import converter as log_conversion
from pm4py.visualization.common import gview
from pm4py.visualization.common import save as gsave
from pm4py.visualization.petri_net.variants import (
    wo_decoration,
    alignments,
    greedy_decoration_performance,
    greedy_decoration_frequency,
    token_decoration_performance,
    token_decoration_frequency,
)
from pm4py.util import exec_utils, pandas_utils
from enum import Enum
from pm4py.objects.petri_net.obj import PetriNet, Marking
from typing import Optional, Dict, Any, Union
from pm4py.objects.log.obj import EventLog, EventStream
import pandas as pd
from pm4py.objects.log.util import dataframe_utils
import graphviz


[docs] class Variants(Enum): WO_DECORATION = wo_decoration FREQUENCY = token_decoration_frequency PERFORMANCE = token_decoration_performance FREQUENCY_GREEDY = greedy_decoration_frequency PERFORMANCE_GREEDY = greedy_decoration_performance ALIGNMENTS = alignments
WO_DECORATION = Variants.WO_DECORATION FREQUENCY_DECORATION = Variants.FREQUENCY PERFORMANCE_DECORATION = Variants.PERFORMANCE FREQUENCY_GREEDY = Variants.FREQUENCY_GREEDY PERFORMANCE_GREEDY = Variants.PERFORMANCE_GREEDY ALIGNMENTS = Variants.ALIGNMENTS
[docs] def apply( net: PetriNet, initial_marking: Marking = None, final_marking: Marking = None, log: Union[EventLog, EventStream, pd.DataFrame] = None, aggregated_statistics=None, parameters: Optional[Dict[Any, Any]] = None, variant=Variants.WO_DECORATION, ) -> graphviz.Digraph: if parameters is None: parameters = {} if log is not None: if pandas_utils.check_is_pandas_dataframe(log): log = dataframe_utils.convert_timestamp_columns_in_df(log) log = log_conversion.apply( log, parameters, log_conversion.TO_EVENT_LOG ) return exec_utils.get_variant(variant).apply( net, initial_marking, final_marking, log=log, aggregated_statistics=aggregated_statistics, parameters=parameters, )
[docs] def save(gviz: graphviz.Digraph, output_file_path: str, parameters=None): """ Save the diagram Parameters ----------- gviz GraphViz diagram output_file_path Path where the GraphViz output should be saved """ gsave.save(gviz, output_file_path, parameters=parameters) return ""
[docs] def view(gviz: graphviz.Digraph, parameters=None): """ View the diagram Parameters ----------- gviz GraphViz diagram """ return gview.view(gviz, parameters=parameters)
[docs] def matplotlib_view(gviz: graphviz.Digraph, parameters=None): """ Views the diagram using Matplotlib Parameters --------------- gviz Graphviz """ return gview.matplotlib_view(gviz, parameters=parameters)