Source code for pm4py.visualization.sna.variants.networkx

'''
    PM4Py – A Process Mining Library for Python
Copyright (C) 2024 Process Intelligence Solutions UG (haftungsbeschränkt)

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as
published by the Free Software Foundation, either version 3 of the
License, or any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU Affero General Public License for more details.

You should have received a copy of the GNU Affero General Public License
along with this program.  If not, see this software project's root or
visit <https://www.gnu.org/licenses/>.

Website: https://processintelligence.solutions
Contact: info@processintelligence.solutions
'''
import shutil
import tempfile
from copy import copy
from enum import Enum

import matplotlib

from pm4py.util import exec_utils, vis_utils
from pm4py.objects.org.sna.obj import SNA
from pm4py.util import constants
from pm4py.util import nx_utils
import networkx as nx


[docs] class Parameters(Enum): WEIGHT_THRESHOLD = "weight_threshold" FORMAT = "format"
[docs] def get_temp_file_name(format): """ Gets a temporary file name for the image Parameters ------------ format Format of the target image """ filename = tempfile.NamedTemporaryFile(suffix="." + format) filename.close() return filename.name
[docs] def apply(sna: SNA, parameters=None): """ Perform SNA visualization starting from the Matrix Container object and the Resource-Resource matrix Parameters ------------- sna Value of the metrics parameters Possible parameters of the algorithm, including: - Parameters.WEIGHT_THRESHOLD -> the weight threshold to use in displaying the graph - Parameters.FORMAT -> format of the output image (png, svg ...) Returns ------------- temp_file_name Name of a temporary file where the visualization is placed """ if parameters is None: parameters = {} weight_threshold = exec_utils.get_param_value( Parameters.WEIGHT_THRESHOLD, parameters, 0 ) format = exec_utils.get_param_value(Parameters.FORMAT, parameters, "png") directed = sna.is_directed temp_file_name = get_temp_file_name(format) if directed: graph = nx_utils.DiGraph() else: graph = nx_utils.Graph() connections = { x for x, y in sna.connections.items() if y >= weight_threshold } graph.add_edges_from(connections) current_backend = copy(matplotlib.get_backend()) matplotlib.use("Agg") from matplotlib import pyplot pyplot.clf() nx.draw( graph, node_size=500, with_labels=True, pos=nx.circular_layout(graph) ) pyplot.savefig(temp_file_name, bbox_inches="tight") pyplot.clf() matplotlib.use(current_backend) return temp_file_name
[docs] def view(temp_file_name, parameters=None): """ View the SNA visualization on the screen Parameters ------------- temp_file_name Temporary file name parameters Possible parameters of the algorithm """ if parameters is None: parameters = {} if constants.DEFAULT_ENABLE_VISUALIZATIONS_VIEW: if constants.DEFAULT_GVIZ_VIEW == "matplotlib_view": import matplotlib.pyplot as plt import matplotlib.image as mpimg img = mpimg.imread(temp_file_name) plt.axis("off") plt.tight_layout(pad=0, w_pad=0, h_pad=0) plt.imshow(img) plt.show() return if vis_utils.check_visualization_inside_jupyter(): vis_utils.view_image_in_jupyter(temp_file_name) else: vis_utils.open_opsystem_image_viewer(temp_file_name)
[docs] def save(temp_file_name, dest_file, parameters=None): """ Save the SNA visualization from a temporary file to a well-defined destination file Parameters ------------- temp_file_name Temporary file name dest_file Destination file parameters Possible parameters of the algorithm """ if parameters is None: parameters = {} shutil.copyfile(temp_file_name, dest_file)