Source code for pm4py.visualization.sna.variants.networkx
'''
PM4Py – A Process Mining Library for Python
Copyright (C) 2024 Process Intelligence Solutions UG (haftungsbeschränkt)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as
published by the Free Software Foundation, either version 3 of the
License, or any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public License
along with this program. If not, see this software project's root or
visit <https://www.gnu.org/licenses/>.
Website: https://processintelligence.solutions
Contact: info@processintelligence.solutions
'''
import shutil
import tempfile
from copy import copy
from enum import Enum
import matplotlib
from pm4py.util import exec_utils, vis_utils
from pm4py.objects.org.sna.obj import SNA
from pm4py.util import constants
from pm4py.util import nx_utils
import networkx as nx
[docs]
class Parameters(Enum):
WEIGHT_THRESHOLD = "weight_threshold"
FORMAT = "format"
[docs]
def get_temp_file_name(format):
"""
Gets a temporary file name for the image
Parameters
------------
format
Format of the target image
"""
filename = tempfile.NamedTemporaryFile(suffix="." + format)
filename.close()
return filename.name
[docs]
def apply(sna: SNA, parameters=None):
"""
Perform SNA visualization starting from the Matrix Container object
and the Resource-Resource matrix
Parameters
-------------
sna
Value of the metrics
parameters
Possible parameters of the algorithm, including:
- Parameters.WEIGHT_THRESHOLD -> the weight threshold to use in displaying the graph
- Parameters.FORMAT -> format of the output image (png, svg ...)
Returns
-------------
temp_file_name
Name of a temporary file where the visualization is placed
"""
if parameters is None:
parameters = {}
weight_threshold = exec_utils.get_param_value(
Parameters.WEIGHT_THRESHOLD, parameters, 0
)
format = exec_utils.get_param_value(Parameters.FORMAT, parameters, "png")
directed = sna.is_directed
temp_file_name = get_temp_file_name(format)
if directed:
graph = nx_utils.DiGraph()
else:
graph = nx_utils.Graph()
connections = {
x for x, y in sna.connections.items() if y >= weight_threshold
}
graph.add_edges_from(connections)
current_backend = copy(matplotlib.get_backend())
matplotlib.use("Agg")
from matplotlib import pyplot
pyplot.clf()
nx.draw(
graph, node_size=500, with_labels=True, pos=nx.circular_layout(graph)
)
pyplot.savefig(temp_file_name, bbox_inches="tight")
pyplot.clf()
matplotlib.use(current_backend)
return temp_file_name
[docs]
def view(temp_file_name, parameters=None):
"""
View the SNA visualization on the screen
Parameters
-------------
temp_file_name
Temporary file name
parameters
Possible parameters of the algorithm
"""
if parameters is None:
parameters = {}
if constants.DEFAULT_ENABLE_VISUALIZATIONS_VIEW:
if constants.DEFAULT_GVIZ_VIEW == "matplotlib_view":
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
img = mpimg.imread(temp_file_name)
plt.axis("off")
plt.tight_layout(pad=0, w_pad=0, h_pad=0)
plt.imshow(img)
plt.show()
return
if vis_utils.check_visualization_inside_jupyter():
vis_utils.view_image_in_jupyter(temp_file_name)
else:
vis_utils.open_opsystem_image_viewer(temp_file_name)
[docs]
def save(temp_file_name, dest_file, parameters=None):
"""
Save the SNA visualization from a temporary file to a well-defined destination file
Parameters
-------------
temp_file_name
Temporary file name
dest_file
Destination file
parameters
Possible parameters of the algorithm
"""
if parameters is None:
parameters = {}
shutil.copyfile(temp_file_name, dest_file)