pm4py.algo.querying.llm.injection.db_knowledge package#

PM4Py – A Process Mining Library for Python

Copyright (C) 2024 Process Intelligence Solutions UG (haftungsbeschränkt)

This program is free software: you can redistribute it and/or modify it under the terms of the GNU Affero General Public License as published by the Free Software Foundation, either version 3 of the License, or any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Affero General Public License for more details.

You should have received a copy of the GNU Affero General Public License along with this program. If not, see this software project’s root or visit <https://www.gnu.org/licenses/>.

Website: https://processintelligence.solutions Contact: info@processintelligence.solutions

Subpackages#

Submodules#

pm4py.algo.querying.llm.injection.db_knowledge.algorithm module#

PM4Py – A Process Mining Library for Python

Copyright (C) 2024 Process Intelligence Solutions UG (haftungsbeschränkt)

This program is free software: you can redistribute it and/or modify it under the terms of the GNU Affero General Public License as published by the Free Software Foundation, either version 3 of the License, or any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Affero General Public License for more details.

You should have received a copy of the GNU Affero General Public License along with this program. If not, see this software project’s root or visit <https://www.gnu.org/licenses/>.

Website: https://processintelligence.solutions Contact: info@processintelligence.solutions

pm4py.algo.querying.llm.injection.db_knowledge.algorithm.apply(db: DataFrame | Connection | OCEL, variant=None, parameters: Dict[Any, Any] | None = None) str[source]#

Provides a string containing the required database knowledge for database querying (in order for the LLM to produce meaningful queries).

Parameters#

db

Database

variant

Variant of the method to be used (pandas_duckdb, sqlite3_traditional)

parameters

Variant-specific parameters

Returns#

db_knowledge

String containing the required database knowledge.