pm4py.vis.save_vis_ocdfg#
- pm4py.vis.save_vis_ocdfg(ocdfg: Dict[str, Any], file_path: str, annotation: str = 'frequency', act_metric: str = 'events', edge_metric='event_couples', act_threshold: int = 0, edge_threshold: int = 0, performance_aggregation: str = 'mean', bgcolor: str = 'white', rankdir: str = 'LR', graph_title: str | None = None, variant_str: str = 'classic', **kwargs)[source]#
Saves the visualization of an OC-DFG.
- Parameters:
ocdfg – Object-centric directly-follows graph
file_path (
str) – Destination pathannotation (
str) – “frequency” or “performance”act_metric (
str) – Metric for activities (“events”, “unique_objects”, “total_objects”)edge_metric (
str) – Metric for edges (“event_couples”, “unique_objects”, “total_objects”)act_threshold (
int) – Threshold on activities frequencyedge_threshold (
int) – Threshold on edges frequencyperformance_aggregation (
str) – Aggregation measure for performance: mean, median, min, max, sumbgcolor (
str) – Background color (default: white)rankdir (
str) – Graph direction (“LR” or “TB”)graph_title – Title of the visualization (if provided)
variant_str (
str) – Variant (“classic” or “elkjs”)
import pm4py ocdfg = pm4py.discover_ocdfg(ocel) pm4py.save_vis_ocdfg(ocdfg, 'ocdfg.png', annotation='frequency')