pm4py.vis.view_ocdfg#
- pm4py.vis.view_ocdfg(ocdfg: Dict[str, Any], annotation: str = 'frequency', act_metric: str = 'events', edge_metric='event_couples', act_threshold: int = 0, edge_threshold: int = 0, performance_aggregation: str = 'mean', format: str = 'png', bgcolor: str = 'white', rankdir: str = 'LR', graph_title: str | None = None, variant_str: str = 'classic')[source]#
Views an OC-DFG (object-centric directly-follows graph).
- Parameters:
ocdfg – Object-centric directly-follows graph
annotation (
str) – The annotation to use (“frequency” or “performance”)act_metric (
str) – The metric for activities (“events”, “unique_objects”, “total_objects”)edge_metric (
str) – The metric for edges (“event_couples”, “unique_objects”, “total_objects”)act_threshold (
int) – Threshold on activities frequency (default: 0)edge_threshold (
int) – Threshold on edges frequency (default: 0)performance_aggregation (
str) – Aggregation measure for performance: mean, median, min, max, sumformat (
str) – Format of the output (if ‘html’ is provided, GraphvizJS is used)bgcolor (
str) – Background color (default: white)rankdir (
str) – Graph direction (“LR” or “TB”)graph_title – Title of the visualization (if provided)
variant_str (
str) – Variant of the visualization (“classic” or “elkjs”)
import pm4py ocdfg = pm4py.discover_ocdfg(ocel) pm4py.view_ocdfg(ocdfg, annotation='frequency', format='svg')